login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of the second largest parts in the partitions of n into 5 primes.
5

%I #12 Oct 01 2021 15:37:36

%S 0,0,0,0,0,0,0,0,0,0,2,2,3,5,6,8,11,11,13,20,20,27,28,35,32,51,41,60,

%T 53,74,75,112,83,136,103,162,126,205,143,246,170,283,219,365,217,415,

%U 276,475,310,554,320,642,376,690,446,835,443,944,532,1019,587

%N Sum of the second largest parts in the partitions of n into 5 primes.

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} c(l) * c(k) * c(j) * c(i) * c(n-i-j-k-l) * i, where c = A010051.

%F a(n) = A308854(n) - A308855(n) - A308856(n) - A308857(n) - A308859(n).

%t Table[Total[Select[IntegerPartitions[n,{5}],AllTrue[#,PrimeQ]&][[All,2]]],{n,0,60}] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Mar 15 2020 *)

%Y Cf. A010051, A259195, A308854, A308855, A308856, A308857, A308859.

%K nonn

%O 0,11

%A _Wesley Ivan Hurt_, Jun 28 2019