login
Sum of all the parts in the partitions of n into 5 squarefree parts.
6

%I #11 Sep 16 2019 21:32:10

%S 0,0,0,0,0,5,6,14,16,36,50,77,84,130,154,225,240,340,396,532,580,777,

%T 858,1104,1176,1525,1638,2052,2156,2697,2910,3503,3680,4455,4760,5635,

%U 5904,7030,7448,8736,9120,10701,11298,13072,13552,15795,16560,18988,19776

%N Sum of all the parts in the partitions of n into 5 squarefree parts.

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F a(n) = n * Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l)^2, where mu is the Möbius function (A008683).

%F a(n) = n * A308840(n).

%e The partitions of n into 5 parts for n = 10, 11, ..

%e 1+1+1+1+10

%e 1+1+1+2+9

%e 1+1+1+3+8

%e 1+1+1+4+7

%e 1+1+1+5+6

%e 1+1+1+1+9 1+1+2+2+8

%e 1+1+1+2+8 1+1+2+3+7

%e 1+1+1+3+7 1+1+2+4+6

%e 1+1+1+4+6 1+1+2+5+5

%e 1+1+1+5+5 1+1+3+3+6

%e 1+1+1+1+8 1+1+2+2+7 1+1+3+4+5

%e 1+1+1+2+7 1+1+2+3+6 1+1+4+4+4

%e 1+1+1+3+6 1+1+2+4+5 1+2+2+2+7

%e 1+1+1+1+7 1+1+1+4+5 1+1+3+3+5 1+2+2+3+6

%e 1+1+1+2+6 1+1+2+2+6 1+1+3+4+4 1+2+2+4+5

%e 1+1+1+3+5 1+1+2+3+5 1+2+2+2+6 1+2+3+3+5

%e 1+1+1+1+6 1+1+1+4+4 1+1+2+4+4 1+2+2+3+5 1+2+3+4+4

%e 1+1+1+2+5 1+1+2+2+5 1+1+3+3+4 1+2+2+4+4 1+3+3+3+4

%e 1+1+1+3+4 1+1+2+3+4 1+2+2+2+5 1+2+3+3+4 2+2+2+2+6

%e 1+1+2+2+4 1+1+3+3+3 1+2+2+3+4 1+3+3+3+3 2+2+2+3+5

%e 1+1+2+3+3 1+2+2+2+4 1+2+3+3+3 2+2+2+2+5 2+2+2+4+4

%e 1+2+2+2+3 1+2+2+3+3 2+2+2+2+4 2+2+2+3+4 2+2+3+3+4

%e 2+2+2+2+2 2+2+2+2+3 2+2+2+3+3 2+2+3+3+3 2+3+3+3+3

%e --------------------------------------------------------------------------

%e n | 10 11 12 13 14 ...

%e --------------------------------------------------------------------------

%e a(n) | 50 77 84 130 154 ...

%e --------------------------------------------------------------------------

%e - _Wesley Ivan Hurt_, Sep 16 2019

%t Table[n*Sum[Sum[Sum[Sum[MoebiusMu[l]^2*MoebiusMu[k]^2*MoebiusMu[j]^2* MoebiusMu[i]^2*MoebiusMu[n - i - j - k - l]^2, {i, j, Floor[(n - j - k - l)/2]}], {j, k, Floor[(n - k - l)/3]}], {k, l, Floor[(n - l)/4]}], {l, Floor[n/5]}], {n, 0, 50}]

%Y Cf. A008683, A308840.

%K nonn

%O 0,6

%A _Wesley Ivan Hurt_, Jun 28 2019