login
Sum of all the parts in the partitions of n into 4 parts.
4

%I #15 Sep 07 2019 09:47:29

%S 0,0,0,0,4,5,12,21,40,54,90,121,180,234,322,405,544,663,846,1026,1280,

%T 1512,1848,2162,2592,3000,3536,4050,4732,5365,6180,6975,7968,8910,

%U 10098,11235,12636,13986,15618,17199,19120,20951,23142,25284,27808,30240,33120

%N Sum of all the parts in the partitions of n into 4 parts.

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F a(n) = n * A026810(n).

%F a(n) = A308733(n) + A308758(n) + A308759(n) + A308760(n).

%F Conjectures from _Colin Barker_, Jun 24 2019: (Start)

%F G.f.: x^4*(4 + 5*x + 8*x^2 + 8*x^3 + 10*x^4 + 7*x^5 + 6*x^6) / ((1 - x)^5*(1 + x)^3*(1 + x^2)^2*(1 + x + x^2)^2).

%F a(n) = a(n-2) + 2*a(n-3) + 2*a(n-4) - 2*a(n-5) - 3*a(n-6) - 4*a(n-7) + 4*a(n-9) + 3*a(n-10) + 2*a(n-11) - 2*a(n-12) - 2*a(n-13) - a(n-14) + a(n-16) for n>15.

%F (End)

%e Figure 1: The partitions of n into 4 parts for n = 8, 9, ..

%e 1+1+1+9

%e 1+1+2+8

%e 1+1+3+7

%e 1+1+4+6

%e 1+1+1+8 1+1+5+5

%e 1+1+2+7 1+2+2+7

%e 1+1+1+7 1+1+3+6 1+2+3+6

%e 1+1+2+6 1+1+4+5 1+2+4+5

%e 1+1+3+5 1+2+2+6 1+3+3+5

%e 1+1+1+6 1+1+4+4 1+2+3+5 1+3+4+4

%e 1+1+1+5 1+1+2+5 1+2+2+5 1+2+4+4 2+2+2+6

%e 1+1+2+4 1+1+3+4 1+2+3+4 1+3+3+4 2+2+3+5

%e 1+1+3+3 1+2+2+4 1+3+3+3 2+2+2+5 2+2+4+4

%e 1+2+2+3 1+2+3+3 2+2+2+4 2+2+3+4 2+3+3+4

%e 2+2+2+2 2+2+2+3 2+2+3+3 2+3+3+3 3+3+3+3

%e --------------------------------------------------------------------------

%e n | 8 9 10 11 12 ...

%e --------------------------------------------------------------------------

%e a(n) | 40 54 90 121 180 ...

%e --------------------------------------------------------------------------

%e - _Wesley Ivan Hurt_, Sep 07 2019

%t Table[n*Sum[Sum[Sum[1, {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 100}]

%Y Cf. A026810, A308733, A308758, A308759, A308760.

%K nonn

%O 0,5

%A _Wesley Ivan Hurt_, Jun 23 2019