%I #9 Jun 12 2019 07:12:01
%S 1,2,7,15,36,80,174,371,787,1644,3410,7031,14423,29455,59948,121656,
%T 246302,497661,1003864,2022143,4068597,8178131,16425116,32965907,
%U 66125958,132577442,265700195,532313023,1066152092
%N Related to the position of the smallest part in all compositions of n.
%H Knopfmacher, Arnold; Munagi, Augustine O. <a href="https://doi.org/10.1007/978-3-642-30979-3_11">Smallest parts in compositions</a>, Kotsireas, Ilias S. (ed.) et al., Advances in combinatorics. 3rd Waterloo workshop on computer algebra (WWCA, W80) 2011, Waterloo, Canada, May 26-29, 2011. Berlin: Springer. 197-207 (2013), V'(z,1,1).
%F G.f.: (x-1)^2*sum_{j>=1} x^(2*j+1)/((1-x-x^j)*(1-x-x^(j+1))^2).
%p (z-1)^2*add(z^(2*j+1)/(1-z-z^j)/(z^(j+1)+z-1)^2,j=1..34) ;
%p taylor(%,z=0,32) ;
%p gfun[seriestolist](%) ;
%K nonn,easy
%O 3,2
%A _R. J. Mathar_, Jun 12 2019