login
Triangle T(n,k) read by rows: the sum of all smallest parts among all k-compositions of n.
2

%I #11 Oct 15 2024 16:48:53

%S 1,2,2,3,2,3,4,6,6,4,5,6,9,12,5,6,12,18,24,20,6,7,12,27,40,50,30,7,8,

%T 20,36,68,100,90,42,8,9,20,54,108,175,210,147,56,9,10,30,72,160,290,

%U 420,392,224,72,10,11,30,90,224,460,756,882,672,324,90,11,12,42,120,312,700,1272,1764,1680,1080,450,110

%N Triangle T(n,k) read by rows: the sum of all smallest parts among all k-compositions of n.

%H Knopfmacher, Arnold; Munagi, Augustine O. <a href="https://doi.org/10.1007/978-3-642-30979-3_11">Smallest parts in compositions</a>, Kotsireas, Ilias S. (ed.) et al., Advances in combinatorics. 3rd Waterloo workshop on computer algebra (WWCA, W80) 2011, Waterloo, Canada, May 26-29, 2011. Berlin: Springer. 197-207 (2013).

%F T(n,k) = k*sum_{j=1..floor(n/k)} binomial(n-(j-1)*k-2, k-2).

%e The triangle starts in row n=1 with columns 1<=k<=n as:

%e 1;

%e 2, 2;

%e 3, 2, 3;

%e 4, 6, 6, 4;

%e 5, 6, 9, 12, 5;

%e 6, 12, 18, 24, 20, 6;

%e 7, 12, 27, 40, 50, 30, 7;

%e 8, 20, 36, 68,100, 90, 42, 8;

%e 9, 20, 54,108,175,210,147, 56, 9;

%e 10, 30, 72,160,290,420,392,224, 72, 10;

%e ...

%p A308630 := proc(n,k)

%p add(j*binomial(n-(j-1)*k-2,k-2),j=1..floor(n/k)) ;

%p %*k ;

%p end proc:

%Y Cf. A097941 (number of smallest parts), A002378 (k=2), A144677 (column k=3 divided by 3), A097940 (row sums).

%K nonn,easy,tabl

%O 1,2

%A _R. J. Mathar_, Jun 12 2019