login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Integral_{x=0..infinity} exp(-x)/(1 + erf(sqrt(x))).
0

%I #14 Jun 19 2019 02:25:58

%S 5,9,8,5,0,1,7,9,2,4,4,9,0,6,1,8,3,0,0,1,7,9,9,8,8,3,7,6,6,1,6,1,7,5,

%T 7,4,9,1,4,6,8,8,9,6,5,5,2,2,9,0,5,4,0,2,8,1,1,2,2,8,8,7,5,1,7,7,5,1,

%U 9,2,1,3,0,6,1,0,9,5,7,9,0,9,6,1,2,1,8,6,4,4,6,9,7,5,0,5,4,0,8,6,8,0,2,3,9,3

%N Decimal expansion of Integral_{x=0..infinity} exp(-x)/(1 + erf(sqrt(x))).

%e Equals 0.5985017924490618300179988376616175749146889655229...

%p evalf(Int(exp(-x)/(1 + erf(sqrt(x))), x=0..infinity, method=_Gquad), 110);

%t RealDigits[NIntegrate[1/(E^z (1 + Erf[Sqrt[z]])), {z, 0, Infinity}, PrecisionGoal -> 20]][[1]]

%t (* Second program: *)

%t digits = 105; dz = 50;

%t f[z0_] := f[z0] = NIntegrate[1/(E^z (1 + Erf[Sqrt[z]])), {z, 0, z0}, WorkingPrecision -> digits+5] + 1/(2 E^z0) // RealDigits[#, 10, digits][[1]]&; f[z0 = dz]; f[z0 = z0 + dz];

%t While[Print["z0 = ", z0]; f[z0] != f[z0 - dz], z0 = z0 + dz];

%t f[z0] (* _Jean-François Alcover_, Jun 18 2019 *)

%K nonn,cons

%O 0,1

%A _Peter Luschny_, Jun 08 2019

%E More digits from _Jean-François Alcover_, Jun 18 2019