%I
%S 0,0,1,0,1,0,2,0,2,1,4,0,5,1,4,2,8,2,10,1,7,4,14,4,13,6,13,4,21,3,24,
%T 9,17,11,20,7,33,13,24,13,40,9,44,13,24,20,52,15,48,19,40,20,65,18,50,
%U 27,49,33,80,21,85,37,50,40,70,24,102,37,71,32,114
%N Number of integersided triangles with perimeter n such that the length of the smallest side is coprime to n.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Integer_triangle">Integer Triangle</a>
%F a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((nk)/2)} sign(floor((i+k)/(nik+1))) * [gcd(k,n) = 1], where [] is the Iverson bracket.
%t Table[Sum[Sum[Floor[1/GCD[k, n]] Sign[Floor[(i + k)/(n  i  k + 1)]], {i, k, Floor[(n  k)/2]}], {k, Floor[n/3]}], {n, 100}]
%Y Cf. A308074.
%K nonn
%O 1,7
%A _Wesley Ivan Hurt_, May 15 2019
