login
a(n) is the square root of A034175(n) + A034175(n+1).
1

%I #13 Apr 29 2019 17:22:54

%S 1,2,3,4,5,6,5,3,4,5,4,3,4,5,6,7,8,9,8,7,8,9,10,8,5,6,7,8,9,10,9,7,8,

%T 9,8,7,8,9,10,8,5,6,7,8,9,10,9,8,9,10,11,12,13,14,13,12,11,9,10,11,12,

%U 13,12,11,12,13,14,15,14,12,13,14,13,12,11,12,14

%N a(n) is the square root of A034175(n) + A034175(n+1).

%C The sum of two consecutive terms of A034175 is always a perfect square.

%H Rémy Sigrist, <a href="/A307784/b307784.txt">Table of n, a(n) for n = 0..10000</a>

%F a(n)^2 = A034175(n) + A034175(n+1).

%e For n = 12:

%e - A034175(12) + A034175(13) = 7 + 9 = 16 = 4^2,

%e - hence a(12) = 4.

%o (PARI) p=0; s=0; for (n=1, 77, s+=2^p; for (v=0, oo, if (!bittest(s,v) && issquare(p+v), print1 (sqrtint(p+v) ", "); p=v; break)))

%Y Cf. A034175.

%K nonn

%O 0,2

%A _Rémy Sigrist_, Apr 28 2019