Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #49 May 13 2019 15:32:37
%S 0,1,3,4,7,7,11,12,14,14,19,19,24,24,24,25,30,30,36,36,36,36,43,43,46,
%T 46,48,48,55,55,62,63,63,63,63,63,70,70,70,70,77,77,85,85,85,85,94,94,
%U 98,98,98,98,106,106,106,106,106,106,115,115,123,123,123,124
%N a(n) = Sum_{k=1..n} A307742(k).
%C Quasi-logarithmic analog of the summatory von Mangoldt function, i.e., of the second Chebyshev function.
%C Conjecture: There is a constant c such that abs(a(n) - 2*n*(c+1)/c) = O(sqrt(n)).
%H I. V. Serov, <a href="/A307743/b307743.txt">Table of n, a(n) for n = 1..10000</a>
%t qLog[n_] := qLog[n] = Module[{p, e}, If[n == 1, 0, Sum[{p, e} = pe; (1 + qLog[p - 1]) e, {pe, FactorInteger[n]}]]];
%t f[n_] := qLog[Exp[MangoldtLambda[n]]];
%t a[n_] := Sum[f[k], {k, 1, n}];
%t Array[a, 64] (* _Jean-François Alcover_, May 07 2019 *)
%o (PARI) mang(n) = ispower(n, , &n); if(isprime(n), n, 1); \\ A014963
%o ql(n) = if (n==1, 0, if(isprime(n), 1+ql(n-1), sumdiv(n, p, if(isprime(p), ql(p)*valuation(n, p))))); \\ A064097
%o f(n) = ql(mang(n)); \\ A307742
%o a(n) = sum(k=1, n, f(k)); \\ _Michel Marcus_, Apr 27 2019
%Y Cf. A307742, A064097, A014963, A008683.
%K nonn
%O 1,3
%A _I. V. Serov_, Apr 26 2019