login
Number of nX4 0..1 arrays with every element unequal to 0, 1, 3, 4, 5 or 7 king-move adjacent elements, with upper left element zero.
1

%I #4 Jun 14 2018 07:05:35

%S 5,21,27,101,347,1129,4982,23181,101615,481454,2332962,11031069,

%T 52713092,254276678,1219410066,5849035794,28135957701,135212478429,

%U 649485620674,3121936522853,15005508174783,72108968570806,346566325528536

%N Number of nX4 0..1 arrays with every element unequal to 0, 1, 3, 4, 5 or 7 king-move adjacent elements, with upper left element zero.

%C Column 4 of A305918.

%H R. H. Hardin, <a href="/A305914/b305914.txt">Table of n, a(n) for n = 1..210</a>

%H R. H. Hardin, <a href="/A305914/a305914.txt">Empirical recurrence of order 66</a>

%F Empirical recurrence of order 66 (see link above)

%e Some solutions for n=5

%e ..0..1..1..1. .0..1..0..0. .0..0..0..0. .0..0..1..0. .0..0..1..0

%e ..1..1..1..0. .0..0..0..0. .1..0..0..1. .1..0..1..1. .0..0..0..0

%e ..1..1..1..1. .0..0..0..0. .0..0..0..0. .1..0..1..1. .0..0..0..0

%e ..0..1..1..1. .1..0..0..0. .1..1..1..1. .0..1..0..1. .0..0..0..0

%e ..0..0..1..1. .1..1..0..0. .0..1..1..0. .1..1..0..0. .0..1..0..0

%Y Cf. A305918.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jun 14 2018