|
|
A305756
|
|
Coefficients of (q*(j(q)-720))^(1/24) where j(q) is the elliptic modular invariant.
|
|
5
|
|
|
1, 1, 8192, 707073, -754075135, -132208502783, 90102565204481, 25124693308972545, -11606164284986636798, -4751761734938773786110, 1495856955988144882193922, 890018844816101689979518466, -181104153998957724140261556733
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
(Conjecture)
Let |b| = 2^p * 3^q * 5^r * ... .
And f(0) = 24, f(b) = 2^(max(0, min(3, p - 1))) * 3^(max(0, min(1, q - 1))) for |b|>0. (See A305762)
Coefficients of (q*(j(q)+b))^(1/f(b)) are integers.
Especially, coefficients of (q*(j(q)+144*k))^(1/24) are integers.
In case of b = -744, |b| = 2^3 * 3^1 * 31 and f(b) = 4. So coefficients of (q*(j(q)-744))^(1/4) are integers. (See A304020)
|
|
LINKS
|
|
|
CROSSREFS
|
(q*(j(q)+144*k))^(1/24): A106205 (k=0), this sequence (k=-5), A106203 (k=-12).
(q*(j(q)-720))^(m/24): A305760 (m=-24), A305758 (m=-1), this sequence (m=1).
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|