login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A305756 Coefficients of (q*(j(q)-720))^(1/24) where j(q) is the elliptic modular invariant. 5
1, 1, 8192, 707073, -754075135, -132208502783, 90102565204481, 25124693308972545, -11606164284986636798, -4751761734938773786110, 1495856955988144882193922, 890018844816101689979518466, -181104153998957724140261556733 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
(Conjecture)
Let |b| = 2^p * 3^q * 5^r * ... .
And f(0) = 24, f(b) = 2^(max(0, min(3, p - 1))) * 3^(max(0, min(1, q - 1))) for |b|>0. (See A305762)
Coefficients of (q*(j(q)+b))^(1/f(b)) are integers.
Especially, coefficients of (q*(j(q)+144*k))^(1/24) are integers.
In case of b = -744, |b| = 2^3 * 3^1 * 31 and f(b) = 4. So coefficients of (q*(j(q)-744))^(1/4) are integers. (See A304020)
LINKS
CROSSREFS
(q*(j(q)+144*k))^(1/24): A106205 (k=0), this sequence (k=-5), A106203 (k=-12).
(q*(j(q)-720))^(m/24): A305760 (m=-24), A305758 (m=-1), this sequence (m=1).
Cf. A000521, A007240 (j(q)-720), A304020, A305757, A305762.
Sequence in context: A035908 A069274 A220585 * A195661 A017690 A010801
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jun 10 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 8 18:04 EDT 2023. Contains 363165 sequences. (Running on oeis4.)