OFFSET
0,2
COMMENTS
Partial sums of A019563.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, Annales de l'Institut Fourier, Tome 49 (1999) no. 3, pp. 727-762.
Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
FORMULA
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8), for n > 7.
a(n) = Sum_{k = 0..7} binomial(14, 2*k)*binomial(n+k, 7).
G.f.: (1 + x)*(1 + 90*x + 911*x^2 + 2092*x^3 + 911*x^4 + 90*x^5 + x^6) / (1 - x)^8. - Colin Barker, Jun 09 2018
From Peter Bala, Mar 12 2024: (Start)
Sum_{k >= 1} 1/(k*a(k)*a(k-1)) = 2*ln(2) - 289/210 = 1/(99 - 3/(107 - 60/(123 - 315/(147 - ... - n^2*(4*n^2 - 1)/((2*n + 1)^2 + 2*7^2 - ...))))).
E.g.f.: exp(x)*(1 + 98*x + 1568*x^2/2! + 9408*x^3/3! + 26880*x^4/4! + 39424*x^5/5! + 28672*x^6/6! + 8192*x^7/7!).
Note that -T(14, i*sqrt(x)) = 1 + 98*x + 1568*x^2 + 9408*x^3 + 26880*x^4 + 39424*x^5 + 28672*x^6 + 8192*x^7, where T(n, x) denotes the n-th Chebyshev polynomial of the first kind. See A008310.
Row 7 of A142992. (End)
MATHEMATICA
Array[Sum[Binomial[14, 2 k] Binomial[# + k, 7], {k, 0, 7}] &, 27, 0] (* Michael De Vlieger, Jun 11 2018 *)
LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {1, 99, 1765, 14407, 74313, 284075, 880685, 2340495}, 30] (* Harvey P. Dale, May 16 2023 *)
PROG
(PARI) {a(n) = sum(k=0, 7, binomial(14, 2*k)*binomial(n+k, 7))}
(PARI) Vec((1 + x)*(1 + 90*x + 911*x^2 + 2092*x^3 + 911*x^4 + 90*x^5 + x^6) / (1 - x)^8 + O(x^40)) \\ Colin Barker, Jun 09 2018
(GAP) b:=7;; List([0..30], n->Sum([0..b], k->Binomial(2*b, 2*k)*Binomial(n+k, b))); # Muniru A Asiru, Jun 09 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jun 09 2018
STATUS
approved