The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A305545 Number of chiral pairs of color loops of length n with exactly 6 different colors. 2

%I

%S 0,0,0,0,0,60,1080,11970,105840,821592,5873760,39705630,258121080,

%T 1631169900,10096542792,61535329380,370709045280,2213740488600,

%U 13132064237040,77509384111278,455754440462040,2672268921657540,15636049474529880,91353538645037220,533180401444362672

%N Number of chiral pairs of color loops of length n with exactly 6 different colors.

%F a(n) = -(k!/4)*(S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/(2n))*Sum_{d|n} phi(d)*S2(n/d,k), with k=6 different colors used and where S2(n,k) is the Stirling subset number A008277.

%F a(n) = (A052826(n) - A056492(n)) / 2.

%F a(n) = A305541(n,6).

%F G.f.: -180 * x^10 * (1+x)^2 / Product_{j=1..6} (1-j*x^2) - Sum_{d>0} (phi(d)/(2d)) * (log(1-6x^d) - 6*log(1-5x^d) + 15*log(1-4x^d) - 20*log(1-3x^3) + 15*log(1-2x^d) - 5*log(1-x^d)).

%e For a(6) = 60, we pair up the 5! = 120 permutations of BCDEF, each with its reversal. Then put an A before each to end up with 60 chiral pairs such as ABCDEF-AFEDCB.

%t k=6; Table[(k!/(2n)) DivisorSum[n, EulerPhi[#] StirlingS2[n/#, k] &] - (k!/4) (StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k]), {n, 1, 40}]

%o (PARI) a(n) = my(k=6); -(k!/4)*(stirling(floor((n+1)/2),k,2) + stirling(ceil((n+1)/2),k,2)) + (k!/(2*n))*sumdiv(n, d, eulerphi(d)*stirling(n/d,k,2)); \\ _Michel Marcus_, Jun 06 2018

%Y Sixth column of A305541.

%K nonn,easy

%O 1,6

%A _Robert A. Russell_, Jun 04 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 10:11 EDT 2020. Contains 337166 sequences. (Running on oeis4.)