login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of nX5 0..1 arrays with every element unequal to 0, 1, 3, 5 or 8 king-move adjacent elements, with upper left element zero.
1

%I #4 May 30 2018 17:05:34

%S 8,53,63,199,649,1729,4685,13671,38115,105379,298557,839061,2341601,

%T 6580629,18490189,51796497,145319939,407960755,1144159141,3209506931,

%U 9006166021,25265766385,70877825571,198858433261,557901465421

%N Number of nX5 0..1 arrays with every element unequal to 0, 1, 3, 5 or 8 king-move adjacent elements, with upper left element zero.

%C Column 5 of A305347.

%H R. H. Hardin, <a href="/A305344/b305344.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 2*a(n-1) +10*a(n-3) -6*a(n-4) -6*a(n-5) -9*a(n-6) -18*a(n-7) -9*a(n-8) -27*a(n-9) +40*a(n-10) +43*a(n-11) +45*a(n-12) +38*a(n-13) +39*a(n-14) +5*a(n-15) -64*a(n-16) -77*a(n-17) -70*a(n-18) -32*a(n-19) -78*a(n-20) +20*a(n-21) +32*a(n-22) +48*a(n-23) +75*a(n-24) +18*a(n-25) +64*a(n-26) -12*a(n-27) -28*a(n-28) -6*a(n-29) -54*a(n-30) +4*a(n-31) -14*a(n-32) -2*a(n-33) +26*a(n-34) -4*a(n-35) +12*a(n-36) -4*a(n-37) for n>48

%e Some solutions for n=5

%e ..0..1..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..1..1..0

%e ..0..0..0..0..1. .0..0..0..0..0. .0..0..0..0..0. .0..1..1..1..1

%e ..0..0..0..0..0. .1..0..0..0..0. .0..0..0..0..1. .1..1..1..1..1

%e ..1..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .1..1..1..1..0

%e ..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .1..0..1..1..1

%Y Cf. A305347.

%K nonn

%O 1,1

%A _R. H. Hardin_, May 30 2018