Wolfdieter Lang, May 312018
$a(n, k)$ tabf head (staircase) for A305309, for $n=1.10$.
The elementwise product of the composition numbers A048996(n, k) and A118851(n, k), the parts of the k-th partitions of n in Abramowitz-Stegun (A-St) order (pp. 831-2 of their handbook).
The row number is n, and $m=m(n, k)=A 036043(n, k)$ is the number of parts of the $k-t h$ partition of n.
The length of row n is $p(n)=A 000041(n)$, the number of partitions of n.


```
1: 1
2: 2 1
3: 3 4 1
4:
5:
6: 
7: (lllllllllllllllllllllll
8: 
9: 
```


The sequence of row lengths is A 000041 : $[1,2,3,5,7,11,15,22,30,42, \ldots]$ (partition numbers).
The row sums give A001906(n) = Fibonacci(2*n) = [1, 3, 8, 21, 55, 144, 377, 987, 2584, 6765, ...].
The triangle obtained by summing the entries with like part numbers m becomes A078812(n, m) $=$ binomial ($n+m-1$, $2 * m-1$)
(with offsets $n>=1, m=1 . . n$).
\#
E.g. a(5, 4) refers to the fourth partition of $n=5$ in this ordering, namely (1^2,3^1) = [1,1,3],
hence $a(5,4)=3 * 3=9$ because $A 048996(5,4)=3!/(2!* 1!)=3$ and $A 118851(5,4) .=3$.
$\mathrm{a}(6,5)=3^{*} 4=12$ for the partition $\left(1^{\wedge} 2,4 \wedge 1\right)=[1,1,4]$ of $n=6$.
$\mathrm{a}(7,10)=(4!/(2!* 1!* 1!))^{*}\left(1^{*} 1^{*} 2^{*} 3\right)=12 * 6=72$ from the 10 th partition of $n=7$ which is
$\left(1^{\wedge} 2,2^{\wedge} 1,3^{\wedge} 1\right)=[1,1,2,3]$ with $m=4$.

\#

Example for the set partition of [n]:= \{1,2, ..., n\} into m = m(n, k) blocks of consecutive numbers corresponding
to a composition obtained from the k-th partition of n with m parts, and the counting of the product of the block lengths:

$1+3+1$. This is mapped (bijectively) to the set partition of [5] with blocks of consecutive numbers $\{1\},\{2,3,4\},\{5\}$.
Each of the other 2 set partitions has the same block length pattern, and therefore the three set partitions have the
same product of their block lengths, namely $1 * 1 * 3=3$ (from the signature of the underlying partition). Therefore the
entry $\mathrm{a}(5,4)=3 * 3=9$ counts the sum of product of the block lengths (or the product of the parts of the partition)
for all 3-block partitions of [5] with consecutive numbers, belonging to the $k=4$ partition of $n=5$, via the
corresponding three part compositions of 5.

