login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A304969 Expansion of 1/(1 - Sum_{k>=1} q(k)*x^k), where q(k) = number of partitions of k into distinct parts (A000009). 39

%I #20 Aug 09 2022 23:16:59

%S 1,1,2,5,11,25,57,129,292,662,1500,3398,7699,17443,39519,89536,202855,

%T 459593,1041267,2359122,5344889,12109524,27435660,62158961,140828999,

%U 319065932,722884274,1637785870,3710611298,8406859805,19046805534,43152950024,97768473163

%N Expansion of 1/(1 - Sum_{k>=1} q(k)*x^k), where q(k) = number of partitions of k into distinct parts (A000009).

%C Invert transform of A000009.

%C From _Gus Wiseman_, Jul 31 2022: (Start)

%C Also the number of ways to choose a multiset partition into distinct constant multisets of a multiset of length n that covers an initial interval of positive integers. This interpretation involves only multisets, not sequences. For example, the a(1) = 1 through a(4) = 11 multiset partitions are:

%C {{1}} {{1,1}} {{1,1,1}} {{1,1,1,1}}

%C {{1},{2}} {{1},{1,1}} {{1},{1,1,1}}

%C {{1},{2,2}} {{1,1},{2,2}}

%C {{2},{1,1}} {{1},{2,2,2}}

%C {{1},{2},{3}} {{2},{1,1,1}}

%C {{1},{2},{1,1}}

%C {{1},{2},{2,2}}

%C {{1},{2},{3,3}}

%C {{1},{3},{2,2}}

%C {{2},{3},{1,1}}

%C {{1},{2},{3},{4}}

%C The non-strict version is A055887.

%C The strongly normal non-strict version is A063834.

%C The strongly normal version is A270995.

%C (End)

%H Alois P. Heinz, <a href="/A304969/b304969.txt">Table of n, a(n) for n = 0..2816</a>

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PartitionFunctionQ.html">Partition Function Q</a>

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%H <a href="/index/Com#comp">Index entries for sequences related to compositions</a>

%F G.f.: 1/(1 - Sum_{k>=1} A000009(k)*x^k).

%F G.f.: 1/(2 - Product_{k>=1} (1 + x^k)).

%F G.f.: 1/(2 - Product_{k>=1} 1/(1 - x^(2*k-1))).

%F G.f.: 1/(2 - exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)))).

%F a(n) ~ c / r^n, where r = 0.441378990861652015438479635503868737167721352874... is the root of the equation QPochhammer[-1, r] = 4 and c = 0.4208931614610039677452560636348863586180784719323982664940444607322... - _Vaclav Kotesovec_, May 23 2018

%e From _Gus Wiseman_, Jul 31 2022: (Start)

%e a(n) is the number of ways to choose a strict integer partition of each part of an integer composition of n. The a(1) = 1 through a(4) = 11 choices are:

%e ((1)) ((2)) ((3)) ((4))

%e ((1)(1)) ((21)) ((31))

%e ((1)(2)) ((1)(3))

%e ((2)(1)) ((2)(2))

%e ((1)(1)(1)) ((3)(1))

%e ((1)(21))

%e ((21)(1))

%e ((1)(1)(2))

%e ((1)(2)(1))

%e ((2)(1)(1))

%e ((1)(1)(1)(1))

%e (End)

%p b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(

%p `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)

%p end:

%p a:= proc(n) option remember; `if`(n=0, 1,

%p add(b(j)*a(n-j), j=1..n))

%p end:

%p seq(a(n), n=0..40); # _Alois P. Heinz_, May 22 2018

%t nmax = 32; CoefficientList[Series[1/(1 - Sum[PartitionsQ[k] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]

%t nmax = 32; CoefficientList[Series[1/(2 - Product[1 + x^k, {k, 1, nmax}]), {x, 0, nmax}], x]

%t nmax = 32; CoefficientList[Series[1/(2 - 1/QPochhammer[x, x^2]), {x, 0, nmax}], x]

%t a[0] = 1; a[n_] := a[n] = Sum[PartitionsQ[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 32}]

%Y Cf. A050342, A055887, A067687, A081362, A279785, A299106.

%Y Row sums of A308680.

%Y The unordered version is A089259, non-strict A001970 (row-sums of A061260).

%Y For partitions instead of compositions we have A270995, non-strict A063834.

%Y A000041 counts integer partitions, strict A000009.

%Y A072233 counts partitions by sum and length.

%Y Cf. A279784.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, May 22 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 22:18 EDT 2024. Contains 371782 sequences. (Running on oeis4.)