login
a(n) = [x^n] (1/(1 - x))*Product_{k>=1} (1 + n*x^k).
0

%I #4 May 18 2018 19:48:06

%S 1,2,5,19,49,126,469,1177,2881,6481,23101,53725,127153,274288,581925,

%T 1860751,4155649,9279791,19409221,39839239,77052401,229393207,

%U 481747949,1035561408,2082441025,4153434376,7822058869,14686515649,39394280689,79657493191,163600884901

%N a(n) = [x^n] (1/(1 - x))*Product_{k>=1} (1 + n*x^k).

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F a(n) = [x^n] (1/(1 - x))*exp(Sum_{k>=1} (-1)^(k+1)*n^k*x^k/(k*(1 - x^k))).

%F a(n) = Sum_{j=0..n} A286957(j,n).

%t Table[SeriesCoefficient[1/(1 - x) Product[(1 + n x^k), {k, 1, n}], {x, 0, n}], {n, 0, 30}]

%t Table[SeriesCoefficient[1/(1 - x) Exp[Sum[(-1)^(k + 1) n^k x^k/(k (1 - x^k)), {k, 1, n}]], {x, 0, n}], {n, 0, 30}]

%t Table[SeriesCoefficient[QPochhammer[-n, x]/((1 + n) (1 - x)), {x, 0, n}], {n, 0, 30}]

%Y Cf. A286957, A291698, A303070, A303071, A303914.

%K nonn

%O 0,2

%A _Ilya Gutkovskiy_, May 18 2018