login
May code shown in binary: a(n) = A007088(A303767(n)).
3

%I #12 May 27 2018 19:44:43

%S 0,1,11,10,110,100,101,111,1111,1000,1001,1011,1010,1110,1100,1101,

%T 11101,10000,10001,10011,10010,10110,10100,10101,10111,11111,11000,

%U 11001,11011,11010,11110,11100,111100,100000,100001,100011,100010,100110,100100,100101,100111,101111,101000,101001,101011,101010,101110,101100,101101

%N May code shown in binary: a(n) = A007088(A303767(n)).

%H Antti Karttunen, <a href="/A304747/b304747.txt">Table of n, a(n) for n = 0..8191</a>

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>

%F a(n) = A007088(A303767(n)).

%e The code can be constructed by the rule: a(n+1) is either the least number obtained from a(n) by toggling one or more 1-bits off if no such number is yet in the sequence, otherwise the least number not yet in sequence that can be obtained from a(n) by toggling one 0-bit on:

%e n a(n)

%e 0 0

%e 1 1

%e 2 11

%e 3 10

%e 4 110

%e 5 100

%e 6 101

%e 7 111

%e 8 1111

%e 9 1000

%e 10 1001

%e 11 1011

%e 12 1010

%e 13 1110

%e 14 1100

%e 15 1101

%e 16 11101

%e 17 10000

%e 18 10001

%e 19 10011

%e 20 10010

%e 21 10110

%e 22 10100

%e 23 10101

%e 24 10111

%e 25 11111

%e 26 11000

%e 27 11001

%e 28 11011

%e 29 11010

%e 30 11110

%e 31 11100

%e 32 111100

%e 33 100000

%o (PARI)

%o A209229(n) = (n && !bitand(n,n-1));

%o A053644(n) = { my(k=1); while(k<=n, k<<=1); (k>>1); }; \\ From A053644

%o A303767(n) = if(!n,n,if(A209229(n),n+A303767(n-1),A053644(n)+A303767(n-A053644(n)-1)));

%o A007088(n) = fromdigits(binary(n), 10); \\ From A007088.

%o A304747(n) = A007088(A303767(n));

%Y Cf. A007088, A303767.

%Y Cf. also A304749.

%K nonn,base

%O 0,3

%A _Antti Karttunen_, May 23 2018