

A304580


Period length 16: repeat 1,8,3,6,5,4,7,2,9,0,7,2,5,4,3,6.


2



1, 8, 3, 6, 5, 4, 7, 2, 9, 0, 7, 2, 5, 4, 3, 6, 1, 8, 3, 6, 5, 4, 7, 2, 9, 0, 7, 2, 5, 4, 3, 6, 1, 8, 3, 6, 5, 4, 7, 2, 9, 0, 7, 2, 5, 4, 3, 6, 1, 8, 3, 6, 5, 4, 7, 2, 9, 0, 7, 2, 5, 4, 3, 6, 1, 8, 3, 6, 5, 4, 7, 2, 9, 0, 7, 2, 5, 4, 3, 6, 1, 8, 3, 6, 5, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Repeating sequences of alternating odd and even single digits that in pairs sum to 9, 11 or 7. Note that 1836547290725436 = 20202020197979796 / 11.


LINKS

Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (0,1,0,0,0,0,0,1,0,1).


FORMULA

From Colin Barker, May 28 2018: (Start)
G.f.: x*(1 + 8*x + 2*x^2  2*x^3 + 2*x^4  2*x^5 + 2*x^6  2*x^7 + 3*x^8 + 6*x^9) / ((1  x)*(1 + x)*(1 + x^8)).
a(n) = a(n2)  a(n8) + a(n10) for n>10.
(End)


PROG

(PARI) Vec(x*(1 + 8*x + 2*x^2  2*x^3 + 2*x^4  2*x^5 + 2*x^6  2*x^7 + 3*x^8 + 6*x^9) / ((1  x)*(1 + x)*(1 + x^8)) + O(x^50)) \\ Colin Barker, May 28 2018


CROSSREFS

Cf. A172423, A172430, A304583.
Sequence in context: A005601 A321098 A308741 * A304583 A104697 A228211
Adjacent sequences: A304577 A304578 A304579 * A304581 A304582 A304583


KEYWORD

nonn,easy


AUTHOR

Halfdan Skjerning, May 15 2018


STATUS

approved



