%I
%S 1,24,60,418,2186,12281,72713,423041,2465234,14485954,84866473,
%T 497508155,2918999870,17121301618,100431971271,589185472211,
%U 3456348339399,20276248723814,118949602782537,697809509847641,4093656522150681
%N Number of nX4 0..1 arrays with every element unequal to 0, 2, 3, 4 or 6 king-move adjacent elements, with upper left element zero.
%C Column 4 of A304551.
%H R. H. Hardin, <a href="/A304547/b304547.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A304547/a304547.txt">Empirical recurrence of order 70</a>
%F Empirical recurrence of order 70 (see link above)
%e Some solutions for n=5
%e ..0..1..1..1. .0..1..0..1. .0..1..1..1. .0..1..0..1. .0..0..0..1
%e ..1..0..0..0. .1..1..0..1. .1..0..0..0. .1..0..0..1. .1..1..1..0
%e ..1..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..1..1..0
%e ..1..0..0..0. .0..0..0..1. .0..1..1..1. .1..0..0..1. .0..1..1..1
%e ..0..1..1..1. .1..1..1..0. .1..0..0..0. .1..0..0..1. .1..0..1..0
%Y Cf. A304551.
%K nonn
%O 1,2
%A _R. H. Hardin_, May 14 2018
|