Proof of the equivalences in the Comment section

Hartmut F. W. Hoft, Nov 04, 2022

Proof of equivalence of (1) and (2): If $n = m^*k$ with $m \le k \le 2^*m$ then $sqrt(n/2) \le m \le sqrt(2^*n)$, proving (2). If divisor d|n satisfies $sqrt(n/2) \le d \le sqrt(2^*n)$ and $n = d^*e$ then either $e \le d \le 2^*e$ or $d \le e \le 2^*d$ so that the pair (d, e) or the pair (e, d) are members of the set in (1).

Proof of equivalence of (2) and (3):

Suppose $n = d^*e$ and $sqrt(n/2) < d < sqrt(2^*n)$ then also $sqrt(n/2) < e < sqrt(2^*n)$. For any factoring $n = x^*y$ the inequalities $r(n) < x < sqrt(2^*n)$ lead to the contradiction $2^*y < x + 1 < 2^*y + 1$. Therefore, d, n/d <= r(n) hold, which proves (3).

Suppose that d|n, that d, n/d \leq r(n) < sqrt(2*n), and that d <= sqrt(n/2), then n = d*(n/d) < sqrt(n/2)*sqrt(2*n) = n, a contradiction. Therefore, sqrt(n/2) < d and similarly sqrt(n/2) < n/d proving (2).