Proof of the equivalences in the Comment section
Hartmut F. W. Hoft, Nov 04, 2022

Proof of equivalence of (1) and (2): If $n=m^{\star} k$ with $m<=k<2^{*} m$ then $\operatorname{sqrt}(n / 2)<m<\operatorname{sqrt}\left(2^{*} n\right.$), proving (2). If divisor $d \mid n$ satisfies sqrt($n / 2$) $<d<\operatorname{sqrt}\left(2^{*} n\right.$) and $n=d^{*}$ e then either $e<d<2^{*} e$ or $d<e<2^{*} d$ so that the pair (d, e) or the pair (e, d) are members of the set in (1).

Proof of equivalence of (2) and (3):
Suppose $n=d^{*}$ e and $\operatorname{sqrt}(n / 2)<d<\operatorname{sqrt}\left(2^{*} n\right)$ then also $\operatorname{sqrt}(n / 2)<e<\operatorname{sqrt}\left(2^{*} n\right)$. For any factoring $n=x^{*} y$ the inequalities $r(n)<x<\operatorname{sqrt}\left(2^{*} n\right)$ lead to the contradiction $2^{*} y<x+1<2^{*} y+1$. Therefore, $d, n / d<=$ $r(n)$ hold, which proves (3).
Suppose that $d \mid n$, that $d, n / d \leq r(n)<\operatorname{sqrt}\left(2^{*} n\right)$, and that $d<=\operatorname{sqrt}(n / 2)$, then $n=d^{*}(n / d)<$ $\operatorname{sqrt}(\mathrm{n} / 2)^{\star} \operatorname{sqrt}\left(2^{*} \mathrm{n}\right)=\mathrm{n}$, a contradiction. Therefore, $\operatorname{sqrt}(\mathrm{n} / 2)<d$ and similarly sqrt(n/2)<n/d proving (2).

