login
Powers of composite squarefree numbers that are not squarefree.
11

%I #14 Aug 20 2024 00:15:14

%S 36,100,196,216,225,441,484,676,900,1000,1089,1156,1225,1296,1444,

%T 1521,1764,2116,2601,2744,3025,3249,3364,3375,3844,4225,4356,4761,

%U 4900,5476,5929,6084,6724,7225,7396,7569,7776,8281,8649,8836,9025,9261,10000,10404,10648,11025,11236

%N Powers of composite squarefree numbers that are not squarefree.

%H Amiram Eldar, <a href="/A303606/b303606.txt">Table of n, a(n) for n = 1..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimePower.html">Prime Power</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Squarefree.html">Squarefree</a>.

%F Sum_{n>=1} 1/a(n) = Sum_{n>=1} 1/((A120944(n)-1)*A120944(n)) = Sum_{k>=2} (zeta(k)/zeta(2*k) - P(k) - 1) = 0.07547719891508850482..., where P(k) is the prime zeta function. - _Amiram Eldar_, Feb 12 2021

%e 196 is in the sequence because 196 = 2^2*7^2.

%e 4900 is in the sequence because 4900 = 2^2*5^2*7^2.

%t Select[Range[12000], Length[Union[FactorInteger[#][[All, 2]]]] == 1 && ! SquareFreeQ[#] && ! PrimePowerQ[#] &]

%t seq[max_] := Module[{sp = Select[Range[Floor@Sqrt[max]], SquareFreeQ[#] && PrimeNu[#] > 1 &], s = {}}, Do[s = Join[s, sp[[k]]^Range[2, Floor@Log[sp[[k]], max]]], {k, 1, Length[sp]}]; Union@s]; seq[10^4] (* _Amiram Eldar_, Feb 12 2021 *)

%o (Python)

%o from math import isqrt

%o from sympy import mobius, primepi, integer_nthroot

%o def A303606(n):

%o def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))-primepi(x))

%o def f(x): return n-3+x+(y:=x.bit_length())-sum(g(integer_nthroot(x,k)[0]) for k in range(2,y))

%o kmin, kmax = 1,2

%o while f(kmax) >= kmax:

%o kmax <<= 1

%o while True:

%o kmid = kmax+kmin>>1

%o if f(kmid) < kmid:

%o kmax = kmid

%o else:

%o kmin = kmid

%o if kmax-kmin <= 1:

%o break

%o return kmax # _Chai Wah Wu_, Aug 19 2024

%Y Intersection of A024619 and A072777.

%Y Intersection of A072774 and A126706.

%Y Intersection of A013929 and A182853.

%Y Cf. A000469, A001597, A005117, A120944, A286708.

%K nonn

%O 1,1

%A _Ilya Gutkovskiy_, Apr 26 2018