login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array T(n,k) read by antidiagonals upwards in which row n is obtained by taking the general formula for generalized n-gonal numbers: m*((n - 2)*m - n + 4)/2, where m = 0, +1, -1, +2, -2, +3, -3, ... and n >= 5. Here n >= 0.
5

%I #65 Aug 29 2018 17:59:19

%S 0,0,1,0,1,-3,0,1,-2,0,0,1,-1,1,-8,0,1,0,2,-5,-3,0,1,1,3,-2,0,-15,0,1,

%T 2,4,1,3,-9,-8,0,1,3,5,4,6,-3,-2,-24,0,1,4,6,7,9,3,4,-14,-15,0,1,5,7,

%U 10,12,9,10,-4,-5,-35,0,1,6,8,13,15,15,16,6,5,-20,-24,0,1,7,9,16,18,21,22,16,15,-5,-9,-48

%N Square array T(n,k) read by antidiagonals upwards in which row n is obtained by taking the general formula for generalized n-gonal numbers: m*((n - 2)*m - n + 4)/2, where m = 0, +1, -1, +2, -2, +3, -3, ... and n >= 5. Here n >= 0.

%C Note that the formula mentioned in the definition gives several kinds of numbers, for example:

%C Row 0 and row 1 give A317300 and A317301 respectively.

%C Row 2 gives A001057 (canonical enumeration of integers).

%C Row 3 gives 0 together with A008795 (Molien series for 3-dimensional representation of dihedral group D_6 of order 6).

%C Row 4 gives A008794 (squares repeated) except the initial zero.

%C Finally, for n >= 5 row n gives the generalized k-gonal numbers (see Crossrefs section).

%H Alois P. Heinz, <a href="/A303301/b303301.txt">Antidiagonals n = 0..200</a> (first 45 antidiagonals from Robert G. Wilson v)

%F T(n,k) = A194801(n-3,k) if n >= 3.

%e Array begins:

%e ------------------------------------------------------------------

%e n\m Seq. No. 0 1 -1 2 -2 3 -3 4 -4 5 -5

%e ------------------------------------------------------------------

%e 0 A317300: 0, 1, -3, 0, -8, -3, -15, -8, -24, -15, -35...

%e 1 A317301: 0, 1, -2, 1, -5, 0, -9, -2, -14, -5, -20...

%e 2 A001057: 0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5...

%e 3 (A008795): 0, 1, 0, 3, 1, 6, 3, 10, 6, 15, 10...

%e 4 (A008794): 0, 1, 1, 4, 4, 9, 9, 16, 16, 25, 25...

%e 5 A001318: 0, 1, 2, 5, 7, 12, 15, 22, 26, 35, 40...

%e 6 A000217: 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55...

%e 7 A085787: 0, 1, 4, 7, 13, 18, 27, 34, 46, 55, 70...

%e 8 A001082: 0, 1, 5, 8, 16, 21, 33, 40, 56, 65, 85...

%e 9 A118277: 0, 1, 6, 9, 19, 24, 39, 46, 66, 75, 100...

%e 10 A074377: 0, 1, 7, 10, 22, 27, 45, 52, 76, 85, 115...

%e 11 A195160: 0, 1, 8, 11, 25, 30, 51, 58, 86, 95, 130...

%e 12 A195162: 0, 1, 9, 12, 28, 33, 57, 64, 96, 105, 145...

%e 13 A195313: 0, 1, 10, 13, 31, 36, 63, 70, 106, 115, 160...

%e 14 A195818: 0, 1, 11, 14, 34, 39, 69, 76, 116, 125, 175...

%e 15 A277082: 0, 1, 12, 15, 37, 42, 75, 82, 126, 135, 190...

%e ...

%t t[n_, r_] := PolygonalNumber[n, If[OddQ@ r, Floor[(r + 1)/2], -r/2]]; Table[ t[n - r, r], {n, 0, 11}, {r, 0, n}] // Flatten (* also *)

%t (* to view the square array *) Table[ t[n, r], {n, 0, 15}, {r, 0, 10}] // TableForm (* _Robert G. Wilson v_, Aug 08 2018 *)

%Y Columns 0..2 are A000004, A000012, A023445.

%Y Column 3 gives A001477 which coincides with the row numbers.

%Y Main diagonal gives A292551.

%Y Row 0-2 gives A317300, A317301, A001057.

%Y Row 3 gives 0 together with A008795.

%Y Row 4 gives A008794.

%Y For n >= 5, rows n gives the generalized n-gonal numbers: A001318 (n=5), A000217 (n=6), A085787 (n=7), A001082 (n=8), A118277 (n=9), A074377 (n=10), A195160 (n=11), A195162 (n=12), A195313 (n=13), A195818 (n=14), A277082 (n=15), A274978 (n=16), A303305 (n=17), A274979 (n=18), A303813 (n=19), A218864 (n=20), A303298 (n=21), A303299 (n=22), A303303 (n=23), A303814 (n=24), A303304 (n=25), A316724 (n=26), A316725 (n=27), A303812 (n=28), A303815 (n=29), A316729 (n=30).

%Y Cf. A194801, A195152.

%Y Cf. A317302 (a similar table but with polygonal numbers).

%K sign,tabl

%O 0,6

%A _Omar E. Pol_, Jun 08 2018