login
Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
1

%I #4 Apr 19 2018 13:22:40

%S 8,37,72,297,1302,5050,20188,81926,329957,1329466,5358347,21608578,

%T 87101482,351134917,1415564660,5706662796,23005513674,92743499633,

%U 373882345405,1507253219678,6076276040079,24495641982958,98750689289605

%N Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

%C Column 4 of A303182.

%H R. H. Hardin, <a href="/A303178/b303178.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 3*a(n-1) +6*a(n-2) -a(n-3) -15*a(n-4) -47*a(n-5) -18*a(n-6) +91*a(n-7) +121*a(n-8) +35*a(n-9) -33*a(n-10) -205*a(n-11) -172*a(n-12) -49*a(n-13) +107*a(n-14) +182*a(n-15) -26*a(n-16) +178*a(n-17) +171*a(n-18) -156*a(n-19) -88*a(n-20) -98*a(n-21) -154*a(n-22) +74*a(n-23) +127*a(n-24) +19*a(n-25) -63*a(n-26) -13*a(n-27) +26*a(n-28) -a(n-29) +4*a(n-30) -4*a(n-31) for n>33

%e Some solutions for n=5

%e ..0..0..0..1. .0..1..0..1. .0..0..1..1. .0..0..0..1. .0..1..0..0

%e ..1..0..1..1. .0..1..0..1. .1..0..1..0. .1..0..1..1. .1..0..0..1

%e ..1..0..1..0. .0..0..0..1. .1..0..1..0. .1..0..1..0. .0..1..0..1

%e ..1..0..0..0. .0..0..0..1. .0..0..0..0. .1..0..1..1. .1..1..0..1

%e ..1..0..1..1. .1..1..0..1. .1..1..1..0. .0..1..0..0. .1..0..0..1

%Y Cf. A303182.

%K nonn

%O 1,1

%A _R. H. Hardin_, Apr 19 2018