%I #6 Jun 20 2019 04:39:31
%S 0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,1,3,3,3,1,4,2,3,2,3,3,3,3,3,4,3,2,
%T 4,4,4,3,4,4,4,3,6,7,6,3,6,6,4,4,7,8,5,3,7,8,7,3,6,6,7,5,7,6,6,5,8,10,
%U 6,5,8,10,8,6,8,11,9,6,9,12,10,7,9,9,7
%N Number of partitions of n into two parts (p,q) with p <= q such that p is semiprime and q is squarefree.
%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F a(n) = Sum_{i=1..floor(n/2)} mu(n-i)^2 * [Omega(i) = 2], where [] is the Iverson bracket, mu = A008683 and Omega = A001222.
%t Table[Sum[MoebiusMu[n - i]^2 KroneckerDelta[PrimeOmega[i], 2], {i, Floor[n/2]}], {n, 100}]
%Y Cf. A001222, A008683, A302538.
%K nonn,easy
%O 1,17
%A _Wesley Ivan Hurt_, Apr 18 2018