login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of [n] having exactly nine alternating descents.
2

%I #19 Apr 30 2018 05:00:19

%S 50521,1160026,25260211,473324450,8650769675,154898419006,

%T 2781436057021,50412205403030,928559550102410,17440458896525180,

%U 334876925319944690,6583281405926363500,132633340608724861210,2740015852551381054980,58057801350608276240150

%N Number of permutations of [n] having exactly nine alternating descents.

%C Index i is an alternating descent of permutation p if either i is odd and p(i) > p(i+1), or i is even and p(i) < p(i+1).

%C From _Vaclav Kotesovec_, Apr 29 2018: (Start)

%C In general, number of permutations of [n] having exactly k alternating descents (column k+1 of A145876) is asymptotic to a(n,k) ~ (4 - Pi)^k * 2^(n + 2) * n^k * n! / (k! * Pi^(n + k + 1)).

%C Equivalently, a(n,k) ~ (4 - Pi)^k * 2^(n + 5/2) * n^(n + k + 1/2) / (k! * Pi^(n + k + 1/2) * exp(n)).

%C (End)

%H Alois P. Heinz, <a href="/A302902/b302902.txt">Table of n, a(n) for n = 10..400</a>

%H D. Chebikin, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v15i1r132">Variations on descents and inversions in permutations</a>, The Electronic J. of Combinatorics, 15 (2008), #R132.

%F a(n) ~ (4 - Pi)^9 * 2^(n + 5/2) * n^(n + 19/2) / (9! * Pi^(n + 19/2) * exp(n)). - _Vaclav Kotesovec_, Apr 29 2018

%F E.g.f.: (362880*cos(x)^5 + (x^9 - 18*x^8 + 216*x^7 - 2016*x^6 + 15120*x^5 - 90720*x^4 + 423360*x^3 - 1451520*x^2 + 3265920*x - 362880*sin(x) - 1814400)*cos(x)^4 + ((- 9*x^8 + 144*x^7 - 1512*x^6 + 12096*x^5 - 75600*x^4 + 362880*x^3 - 1270080*x^2 + 2903040*x - 1451520)*sin(x) - 1107*x^8 + 17712*x^7 - 137592*x^6 + 713664*x^5 - 2646000*x^4 + 6894720*x^3 - 11430720*x^2 + 8709120*x - 2903040)*cos(x)^3 + ((- 251*x^9 + 4518*x^8 - 40392*x^7 + 247968*x^6 - 1134000*x^5 + 3900960*x^4 - 9737280*x^3 + 15966720*x^2 - 13063680*x + 4354560)*sin(x) - 3653*x^9 + 65754*x^8 - 543240*x^7 + 2776032*x^6 - 9752400*x^5 + 24040800*x^4 - 40219200*x^3 + 42094080*x^2 - 26127360*x + 7257600)*cos(x)^2 + ((9108*x^8 - 145728*x^7 + 1037232*x^6 - 4354560*x^5 + 11793600*x^4 - 20321280*x^3 + 20321280*x^2 - 11612160*x + 2903040)*sin(x) + 13572*x^8 - 217152*x^7 + 1502928*x^6 - 5806080*x^5 + 13608000*x^4 - 20321280*x^3 + 20321280*x^2 - 11612160*x + 2903040)*cos(x) + (11092*x^9 - 199656*x^8 + 1599696*x^7 - 7499520*x^6 + 22680000*x^5 - 45722880*x^4 + 60963840*x^3 - 52254720*x^2 + 26127360*x - 5806080)*sin(x) + 11588*x^9 - 208584*x^8 + 1666224*x^7 - 7741440*x^6 + 23042880*x^5 - 45722880*x^4 + 60963840*x^3 - 52254720*x^2 + 26127360*x - 5806080)/((362880*sin(x) - 1814400)*cos(x)^4 + (- 4354560*sin(x) + 7257600)*cos(x)^2 + 5806080*sin(x) - 5806080). - _Vaclav Kotesovec_, Apr 30 2018

%p b:= proc(u, o) option remember; series(`if`(u+o=0, 1,

%p add(b(o+j-1, u-j)*x, j=1..u)+

%p add(b(o-j, u-1+j), j=1..o)), x, 11)

%p end:

%p a:= n-> coeff(b(n, 0), x, 10):

%p seq(a(n), n=10..30);

%t nmax = 30; Drop[CoefficientList[Series[(362880*Cos[x]^5 + (x^9 - 18*x^8 + 216*x^7 - 2016*x^6 + 15120*x^5 - 90720*x^4 + 423360*x^3 - 1451520*x^2 + 3265920*x - 362880*Sin[x] - 1814400)*Cos[x]^4 + ((- 9*x^8 + 144*x^7 - 1512*x^6 + 12096*x^5 - 75600*x^4 + 362880*x^3 - 1270080*x^2 + 2903040*x - 1451520)*Sin[x] - 1107*x^8 + 17712*x^7 - 137592*x^6 + 713664*x^5 - 2646000*x^4 + 6894720*x^3 - 11430720*x^2 + 8709120*x - 2903040)*Cos[x]^3 + ((- 251*x^9 + 4518*x^8 - 40392*x^7 + 247968*x^6 - 1134000*x^5 + 3900960*x^4 - 9737280*x^3 + 15966720*x^2 - 13063680*x + 4354560)*Sin[x] - 3653*x^9 + 65754*x^8 - 543240*x^7 + 2776032*x^6 - 9752400*x^5 + 24040800*x^4 - 40219200*x^3 + 42094080*x^2 - 26127360*x + 7257600)*Cos[x]^2 + ((9108*x^8 - 145728*x^7 + 1037232*x^6 - 4354560*x^5 + 11793600*x^4 - 20321280*x^3 + 20321280*x^2 - 11612160*x + 2903040)*Sin[x] + 13572*x^8 - 217152*x^7 + 1502928*x^6 - 5806080*x^5 + 13608000*x^4 - 20321280*x^3 + 20321280*x^2 - 11612160*x + 2903040)*Cos[x] + (11092*x^9 - 199656*x^8 + 1599696*x^7 - 7499520*x^6 + 22680000*x^5 - 45722880*x^4 + 60963840*x^3 - 52254720*x^2 + 26127360*x - 5806080)*Sin[x] + 11588*x^9 - 208584*x^8 + 1666224*x^7 - 7741440*x^6 + 23042880*x^5 - 45722880*x^4 + 60963840*x^3 - 52254720*x^2 + 26127360*x - 5806080)/((362880*Sin[x] - 1814400)*Cos[x]^4 + (- 4354560*Sin[x] + 7257600)*Cos[x]^2 + 5806080*Sin[x] - 5806080), {x, 0, nmax}], x] * Range[0, nmax]!, 10] (* _Vaclav Kotesovec_, Apr 30 2018 *)

%Y Column k=10 of A145876.

%K nonn

%O 10,1

%A _Alois P. Heinz_, Apr 15 2018