login
Triangle T(n,k) read by rows giving the coefficients of the matching-generating polynomial of the n X n knight graph (0 <= k <= floor(n^2/2)).
1

%I #8 Apr 06 2018 17:15:26

%S 1,1,1,8,20,16,2,1,24,224,1032,2464,2944,1592,320,16,1,48,964,10592,

%T 70024,289344,754244,1226288,1203410,670000,189544,22112,644,1,80,

%U 2828,58432,786982,7298848,48033800,227891056,784428297,1956801264,3509779148,4458911088,3919123796,2301829920,858287984,187915392,21263600,980608,10304

%N Triangle T(n,k) read by rows giving the coefficients of the matching-generating polynomial of the n X n knight graph (0 <= k <= floor(n^2/2)).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/KnightGraph.html">Knight Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Matching-GeneratingPolynomial.html">Matching-Generating Polynomial</a>

%e Rows as polynomials:

%e 1,

%e 1,

%e 1 + 8*x + 20*x^2 + 16*x^3 + 2*x^4,

%e 1 + 24*x + 224*x^2 + 1032*x^3 + 2464*x^4 + 2944*x^5 + 1592*x^6 + 320*x^7 + 16*x^8,

%e 1 + 48*x + 964*x^2 + 10592*x^3 + 70024*x^4 + 289344*x^5 + 754244*x^6 + 1226288*x^7 + 1203410*x^8 + 670000*x^9 + 189544*x^10 + 22112*x^11 + 644*x^12,

%e ...

%Y Row sums are A287225.

%K nonn,tabl

%O 1,4

%A _Eric W. Weisstein_, Apr 03 2018