%I #14 Apr 15 2018 05:09:16
%S 1,-2,5,-17,79,-471,3391,-28451,272447,-2933807,35102403,-462021525,
%T 6634207777,-103200019093,1728836723813,-31030630439249,
%U 594094812208133,-12085090282079299,260296103744105623,-5917885334682695549,141625618336446419151
%N Hurwitz inverse of [1 followed by primes], [1,2,3,5,7,...].
%C In the ring of Hurwitz sequences all members have offset 0.
%D Xing Gao and William F. Keigher, Interlacing of Hurwitz series, Communications in Algebra, 45:5 (2017), 2163-2185, DOI: 10.1080/00927872.2016.1226885
%H Seiichi Manyama, <a href="/A302194/b302194.txt">Table of n, a(n) for n = 0..436</a>
%H N. J. A. Sloane, <a href="/A302189/a302189.txt">Maple programs for operations on Hurwitz sequences</a>
%F E.g.f. = 1 / (1 + Sum_{n >= 1} prime(n)*x^n/n!).
%p # first load Maple commands for Hurwitz operations from link
%p s:=[1, seq(ithprime(n),n=1..64)];
%p Hinv(s);
%Y Cf. A302191, A302192.
%K sign
%O 0,2
%A _N. J. A. Sloane_ and William F. Keigher, Apr 12 2018