login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A302103 G.f. A(x) satisfies: A(x) = Sum_{n>=0} (2 + x*A(x)^n)^n / 3^(n+1). 4

%I

%S 1,1,6,63,837,12672,208686,3647568,66697203,1264307667,24696153573,

%T 495076265421,10157438738790,212900154037875,4553735135491134,

%U 99341289091151409,2210262851488661562,50173932628981325523,1162965513498859292415,27554435907912281877315,668277970101220006626558,16617278354076763108026795

%N G.f. A(x) satisfies: A(x) = Sum_{n>=0} (2 + x*A(x)^n)^n / 3^(n+1).

%C Compare to: G(x) = Sum_{n>=0} (2 + x*G(x)^k)^n / 3^(n+1) holds when G(x) = 1 + x*G(x)^(k+1) for fixed k.

%H Paul D. Hanna, <a href="/A302103/b302103.txt">Table of n, a(n) for n = 0..100</a>

%F G.f. A(x) satisfies:

%F (1) A(x) = Sum_{n>=0} (2 + x*A(x)^n)^n / 3^(n+1).

%F (2) A(x) = Sum_{n>=0} x^n * A(x)^(n^2) / (3 - 2*A(x)^n)^(n+1).

%e G.f.: A(x) = 1 + x + 6*x^2 + 63*x^3 + 837*x^4 + 12672*x^5 + 208686*x^6 + 3647568*x^7 + 66697203*x^8 + 1264307667*x^9 + 24696153573*x^10 + ...

%e such that

%e A(x) = 2/3 + (2 + x*A(x))/3^2 + (2 + x*A(x)^2)^2/3^3 + (2 + x*A(x)^3)^3/3^4 + (2 + x*A(x)^4)^4/3^5 + (2 + x*A(x)^5)^5/3^6 + (2 + x*A(x)^6)^6/3^7 + ...

%e Also, due to a series identity,

%e A(x) = 1 + x*A(x)/(3 - 2*A(x))^2 + x^2*A(x)^4/(3 - 2*A(x)^2)^3 + x^3*A(x)^9/(3 - 2*A(x)^3)^4 + x^4*A(x)^16/(3 - 2*A(x)^4)^5 + x^5*A(x)^25/(3 - 2*A(x)^5)^6 + x^6*A(x)^36/(3 - 2*A(x)^6)^7 + ... + x^n * A(x)^(n^2) / (3 - 2*A(x)^n)^(n+1) + ...

%o (PARI) {a(n) = my(A=1); for(i=0, n, A = sum(m=0, n, x^m * A^(m^2) / (3 - 2*A^m + x*O(x^n))^(m+1) )); polcoeff(A, n)}

%o for(n=0,30,print1(a(n),", "))

%Y Cf. A300050, A302104, A302105.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Apr 05 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 03:20 EDT 2021. Contains 347605 sequences. (Running on oeis4.)