%I
%S 1023456789,1023456798,1023456789,1023457896,1023467895,1023456798,
%T 1023456798,1023457896,1023456789,1234567890,1024375869,1023457896,
%U 1023456798,1023456798,1023467895,1023457968,1023457698,1023456798,1023458769,1234567980,1023456798,1024375968
%N a(n) is the smallest pandigital number divisible by n, or 0 if no such pandigital number exists.
%C Note: in this sequence, "pandigital" numbers are defined as in A050278 (i.e., with each of the ten digits 0..9 appearing exactly once).
%C The first 99 terms coincide with those of A061604.  _Giovanni Resta_, May 15 2018
%C From _Jon E. Schoenfield_, May 19 2018: (Start)
%C Record high values exceeding 2*10^9 begin a(10001) = 2650134987, a(20002) = 2750134986, a(27775) = 3012948675, a(40004) = 3760215984, a(44440) = 4123987560, a(50005) = 6820431975, ...
%C a(n)=0 for every n divisible by 100. Other than multiples of 100, the smallest values of n for which a(n)=0 are 37037 and 55550. The last nonzero term is a(9876543210) = 9876543210. (End)
%H http://misacertijos.blogspot.com.ar/2010/11/2004pandigitalyprimo.html?m=1
%H Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_259.htm">Puzzle 259</a>
%e a(11) = 1024375869 = 11 * 93125079 because it is the smallest pandigital number that is divisible by 11;
%e a(100) = 0 because there is no pandigital number that is divisible by 100.
%t s = Select[FromDigits /@ Permutations[Range[0, 9]], # > 10^9 &]; Table[ SelectFirst[ s, Mod[#, n] == 0 &, 0], {n, 22}] (* _Giovanni Resta_, May 15 2018 *)
%Y Cf. A050278, A061604, A171102.
%K nonn,base
%O 1,1
%A _Rodolfo Kurchan_, May 06 2018
