%I #21 Oct 06 2018 04:14:59
%S 1,5,43,463,5193,58653,663203,7500343,84825873,959351093,10849935003,
%T 122709094303,1387798370393,15695530423373,177511143297043,
%U 2007591024144903,22705175829637153,256787863292718693,2904183928335418123,32845338488555237743
%N Number of noleaf subgraphs of the 3 X n grid.
%C Also, the number of ways to lay unitlength matchsticks on a 3 X n grid of points in such a way that no end is "orphaned".
%C Conjecture: a(n) mod 10 = 3 for n > 2.
%H Peter Kagey, <a href="/A301976/b301976.txt">Table of n, a(n) for n = 1..949</a>
%F Conjectures from _Colin Barker_, Mar 30 2018: (Start)
%F G.f.: x*(1 + x)*(1  8*x  3*x^2) / (1  12*x + 6*x^2 + 20*x^3 + 5*x^4).
%F a(n) = 12*a(n1)  6*a(n2)  20*a(n3)  5*a(n4) for n>4.
%F (End)
%e Three of the a(4) = 463 subgraphs of the 3 X 4 grid with no leaf vertices are
%e ++ ++ + + ++ + + ++
%e        
%e +++ +, + +++, and ++ ++.
%e       
%e ++++ + ++ + ++ + +
%Y A093129 is analogous for 2 X (n+1) grids.
%K nonn
%O 1,2
%A _Peter Kagey_, Mar 29 2018
