Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Oct 10 2024 15:59:04
%S -1,0,1,0,-1,1,1,-1,-1,0,1,1,-1,0,1,-1,-1,0,1,0,-1,1,1,0,-1,-1,1,1,-1,
%T 0,1,-1,-1,0,1,0,-1,1,1,-1,-1,0,1,1,-1,0,1,0,-1,-1,1,0,-1,1,1,0,-1,-1,
%U 1,1,-1,0,1,-1,-1,0,1,0,-1,1,1,-1,-1,0,1,1,-1,0,1,-1,-1,0,1,0,-1,1,1,0,-1,-1,1,1,-1,0,1,0,-1,-1,1,0
%N The Pagoda sequence: a sequence with isolated zeros in its number wall over finite fields.
%C c(0), c(1), ... is the fixed point of inflation morphism 1 -> 1 3, 2 -> 2 3, 3 -> 1 4, 4 -> 2 4, starting from state 1;
%C a(-1), a(0), ... is the image of c(n) under encoding morphism 1 -> -1,-1,0,+1, 2 -> 0,-1,-1,+1, 3 -> 0,-1,+1,+1, 4 -> +1,-1,0,+1;
%C where c(n) denotes A301848(n).
%C The number-walls (signed Hankel determinants) over finite fields with characteristic -1 (mod 4) of this sequence have apparently only isolated zeros, though that has been proved only for p = 3,7.
%D Jean-Paul Allouche and Jeffrey O. Shallit, Automatic sequences, Cambridge, 2003.
%H W. F. Lunnon, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL4/LUNNON/numbwall10.html">The number-wall algorithm: an LFSR cookbook</a>, Journal of Integer Sequences 4 (2001), no. 1, 01.1.1.
%H Fred Lunnon, <a href="https://arxiv.org/abs/0906.3286">The Pagoda sequence: a ramble through linear complexity, number walls, D0L sequences, finite state automata, and aperiodic tilings</a>, Electronic Proceedings in Theoretical Computer Science 1 (2009), 130-148.
%F a(n) = b(n+1) - b(n-1), where b(n) denotes A038189(n).
%F a(n) = a(-n) for all n in Z except |n|=1. a(-1) = -1. - _Michael Somos_, Oct 05 2024
%t b[n_] := b[n] = If[n == 0, 0, BitGet[n, IntegerExponent[n, 2] + 1]];
%t a[n_] := b[n+1] - b[n-1];
%t Array[a, 100, 0] (* _Jean-François Alcover_, Dec 13 2018 *)
%o (Magma)
%o function b (n)
%o if n eq 0 then return 0; // alternatively, return 1;
%o else while IsEven(n) do n := n div 2; end while; end if;
%o return n div 2 mod 2; end function;
%o function a (n)
%o return b(n+1) - b(n-1); end function;
%o nlo := 0; nhi := 32;
%o [a(n) : n in [nlo..nhi] ];
%Y Cf. A038189, A301848, A301850.
%K sign
%O 0
%A _Fred Lunnon_, Mar 27 2018
%E More terms from _Jean-François Alcover_, Dec 13 2018