%I #10 Aug 29 2018 02:52:34
%S 1,1,2,3,6,9,16,25,43,66,108,166,269,408,643,975,1517,2277,3497,5223,
%T 7936,11803,17736,26219,39174,57594,85299,124957,183987,268158,392685,
%U 569987,830282,1200843,1740422,2507823,3620550,5197885,7472229,10694865,15319700
%N Number of ways to choose a strict rooted partition of each part in a rooted partition of n.
%C A rooted partition of n is an integer partition of n - 1.
%H Andrew Howroyd, <a href="/A301753/b301753.txt">Table of n, a(n) for n = 1..500</a>
%F O.g.f.: x * Product_{n > 0} 1/(1 - A000009(n-1) x^n).
%e The a(7) = 16 rooted twice-partitions:
%e (5), (32), (41),
%e (2)(2), (3)(1), (4)(), (21)(1), (31)(),
%e (1)(1)(1), (2)(1)(), (3)()(), (21)()(),
%e (1)(1)()(), (2)()()(),
%e (1)()()()(),
%e ()()()()()().
%t nn=50;
%t ser=x*Product[1/(1-PartitionsQ[n-1]x^n),{n,nn}];
%t Table[SeriesCoefficient[ser,{x,0,n}],{n,nn}]
%o (PARI) seq(n)={my(u=Vec(prod(k=1, n-1, 1 + x^k + O(x^n)))); Vec(1/prod(k=1, n-1, 1 - u[k]*x^k + O(x^n)))} \\ _Andrew Howroyd_, Aug 29 2018
%Y Cf. A002865, A032305, A063834, A093637, A270995, A281113, A296119, A301422, A301462, A301467, A301480, A301706, A301751.
%K nonn
%O 1,3
%A _Gus Wiseman_, Mar 26 2018