login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Partial sums of A301690.
1

%I #14 Aug 30 2023 16:50:12

%S 1,7,13,22,34,52,76,97,121,151,187,229,265,304,352,406,466,517,571,

%T 637,709,787,853,922,1006,1096,1192,1273,1357,1459,1567,1681,1777,

%U 1876,1996,2122,2254,2365,2479,2617,2761,2911,3037,3166,3322,3484,3652,3793,3937,4111,4291,4477,4633,4792,4984,5182,5386,5557,5731,5941

%N Partial sums of A301690.

%C Linear recurrence and g.f. confirmed by Shutov/Maleev link in A301690. - _Ray Chandler_, Aug 30 2023

%H Ray Chandler, <a href="/A301691/b301691.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, 2, -2, 0, 0, 0, -1, 1).

%F From _Chai Wah Wu_, Feb 03 2021: (Start)

%F a(n) = a(n-1) + 2*a(n-5) - 2*a(n-6) - a(n-10) + a(n-11) for n > 10.

%F G.f.: -(x^2 + x + 1)*(x^8 + 5*x^7 + 4*x^5 + 8*x^4 + 4*x^3 + 5*x + 1)/((x - 1)^3*(x^4 + x^3 + x^2 + x + 1)^2). (End)

%Y Cf. A301690.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Mar 25 2018