login
Expansion of Product_{k>=1} 1/(1 - x^k)^A050985(k).
3

%I #7 Mar 31 2018 07:28:20

%S 1,1,3,6,13,24,48,86,153,275,479,817,1388,2317,3831,6277,10184,16367,

%T 26122,41359,65016,101567,157642,243232,373277,569711,865164,1307587,

%U 1967161,2946379,4394667,6528255,9660197,14241627,20920564,30625556,44683600,64984798

%N Expansion of Product_{k>=1} 1/(1 - x^k)^A050985(k).

%C Euler transform of A050985.

%H Vaclav Kotesovec, <a href="/A301597/b301597.txt">Table of n, a(n) for n = 0..1000</a>

%t nmax = 40; CoefficientList[Series[Exp[Sum[Sum[k/(Times @@ (#[[1]]^(#[[2]] - Mod[#[[2]], 3]) & ) /@ FactorInteger[k]) * x^(j*k) / j, {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Mar 31 2018, after _Jean-François Alcover_ *)

%Y Cf. A050985, A301596.

%K nonn

%O 0,3

%A _Vaclav Kotesovec_, Mar 24 2018