The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A301436 G.f. A(x) satisfies: 1 = Sum_{n>=0} ( 2*(1+x)^n - A(x) )^n / 2^(n+1). 4
 1, 6, 50, 1582, 82722, 5842550, 511261682, 52903385886, 6290859281538, 843328959011622, 125706002934030898, 20617322695573745742, 3689811206934015405474, 715633021826704924420758, 149544785675949258192968178, 33502338836970792659941911358, 8011296279710787237594088464898, 2036927238948023349890031708437830, 548778491694092921577420334962662962, 156179940994829385561873698156273034606 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Paul D. Hanna, Table of n, a(n) for n = 0..50 FORMULA G.f.: 1 = Sum_{n>=0} 2^n * (1+x)^(n^2) / (2 + (1+x)^n * A(x))^(n+1). EXAMPLE G.f.: A(x) = 1 + 6*x + 50*x^2 + 1582*x^3 + 82722*x^4 + 5842550*x^5 + 511261682*x^6 + 52903385886*x^7 + 6290859281538*x^8 + ... such that 1 = 1/2 + (2*(1+x) - A(x))/2^2 + (2*(1+x)^2 - A(x))^2/2^3 + (2*(1+x)^3 - A(x))^3/2^4 + (2*(1+x)^4 - A(x))^4/2^5 + (2*(1+x)^5 - A(x))^5/2^6 + ... Also, 1 = 1/(2 + A(x)) + 2*(1+x)/(2 + (1+x)*A(x))^2 + 2^2*(1+x)^4/(2 + (1+x)^2*A(x))^3 + 2^3*(1+x)^9/(2 + (1+x)^3*A(x))^4 + 2^4*(1+x)^16/(2 + (1+x)^4*A(x))^5 + 2^5*(1+x)^25/(2 + (1+x)^5*A(x))^6 + ... CROSSREFS Cf. A303653, A301465. Sequence in context: A008380 A196905 A066303 * A136383 A043084 A335704 Adjacent sequences: A301433 A301434 A301435 * A301437 A301438 A301439 KEYWORD nonn AUTHOR Paul D. Hanna, Mar 24 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 12:38 EST 2023. Contains 367461 sequences. (Running on oeis4.)