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We define a g-analogue of the arithmetical totient function ¢(n) and prove
g-versions of some elementary results about ¢(n).

Euler’s totient function ¢(n) = A000010(n) is defined as the number of
positive integers less than or equal to n that are coprime to n.

Two elementary properties of the totient function are Gauss’ formula

S 6(d) =n, (2)

d|n

and the formula obtained from it by Md&bius inversion

> () = o). 3)
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We define the g-totient function ¢,(q), a g-analogue of the totient function
¢(n), to be the polynomial

On(q) = > ¢* (4)
1<k<n
ged(k,n) =1
so that ¢, (1) = ¢(n). The polynomial ¢, (q) is the n-th row polynomial of
A300294. The first few values are tabled below
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The following g-analogue of (2) is stated in [Cam, equation 1.6]. Our proof
follows one of the standard proofs of Gauss’ formula.

Theorem 1.

> dald) =g+ 4 +q" (5)
d|n


https://oeis.org/A000010
https://oeis.org/A300294

Proof.

Let A, = {1,2,...,n}. For each positive integer d, a divisor of n, define
Ag={z:1<z<n,ged(z,n) =d}. (6)
Clearly, A,, is the disjoint union of A4 taken over all the divisors of n:
An = UgpnAa.

Hence

q+q2+~--+q"=Z<qu>~ (7)

dln \z€Aq

Each element of z € Ay is divisible by d, say « = dy. Now ged(dy,n) = d if and
only if ged(y,n/d) = 1. Furthermore, 1 < dy < n if and only if 1 <y < n/d.

Therefore from (6)

Ag={dy:1<y<n/dand ged(y,n/d) = 1}.

Hence, by the definition (4) of the g-totient function,

> 4" = bnsa (0%

T€Ag

It follows from (7) that

g+t = Z(Z qm)

dln \z€Aq

= Z ¢n/d (qd)
d|n
d|n

A g-analogue of Cesdro’s identity.
Theorem 1 is the particular case f(n) =1 of the following more general result.

Theorem 2. Let f be an arithmetic function. For positive integer n we have

> Flged(k,n) ¢ =" £(d) ¢uya (0%).- (®)

k=1 d|n

n



Proof.

> flged(k,n) g = > f(d) > g™ =" f(d)nsa (¢%) . O
k=1 d|n d|n

y<n/d
ged(y,n/d) =1

Setting ¢ = 1 in (8) we recover Cesdro’s identity [Ces]
" n
> f(ged(k,m) = f(d)o <d>
k=1 d|n

Next we give a g-analogue of (3).

Theorem 3. Forn > 2,

S ld) 4 = onla)

d|n
Proof.

Let

denote the left-hand side of (9).

If d|n then
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so P(n,q) is polynomial in ¢ of degree less than n.

We calculate the coefficient of ¢* in P(n, q) for 0 < k < n. There are three

cases to consider.

(i) K =0. The constant term of P(n,q) is Zu(d): 0 for n > 2.

dln

(10)

(11)

(ii) Next suppose k is such that ged(k,n) = D > 1. We shall show that the

coefficient of ¢* in the polynomial P(n, q) is zero.



From (11), we see that we get a contribution of 1(d) to the coefficient of ¢*
from each divisor d of n such that some multiple of d is equal to k, that is,
from the divisors d of ged(n, k) = D.

Thus

the coefficient of ¢*in P(n,q) = Z wu(d)
d|D
= 0.

(iii) Finally, suppose now k is such that gcd(k,n) = 1. Then only the summand
(" —1)/(q—1) =1+4g+---+¢" ! in (10), corresponding to the divisor d = 1,
includes the term ¢*, and that with coefficient equal to 1. We conclude that

q"—1

P(n,q) = Zﬂ(d)ﬁ
dn q

- Y ¢
ged(k,n) =1

An easy corollary of Theorem 3 is that the generating function of the g-totient
polynomials takes the form

xn
Z,u(n) T —ga) gz + g2 + (g+ ¢*) 2° + (¢ + ¢*) 2* +
n>1

(g++¢*+q*) 2"+ (¢ +¢°)a® +- -

The Mobius function and Ramanujan’s sum as values of the
g-totient function

Setting ¢ = €>™/™ in Theorem 3, we find that

o (777)
_ Z e2mik/n

1<k<n
ged(k,n) =

p(n)

IN

1

expressing the Mobius function p(n) as the sum of the primitive n-th roots of
unity. This is a well-known result. See, for example, [H&W, Theorem 271 with
m = 1].



More generally, Ramanujan’s two parameter sum ¢, (m) (see A054533) defined
by

cn(m) _ Z eQm’km/n

can be expressed as a value of the g-totient function:
ealm) = g (e2mm/m). (12)

It can be shown from the definition that ¢, (m) is multiplicative when
considered as a function of n for a fixed value of m: that is, for ny and no
coprime we have

Cny (M), (M) = Cpyny (M). (13)

The g¢-totient function ¢, (q) is not multiplicative as a function of n. However,
for ny and ng coprime, it follows from (12) and (13) that the polynomial
2mim

Ony (4™2) by (G™) — Pryn, (q) vanishes for ¢ = exp ,0<m < ninag,

ning
the nins-th roots of unity, and so factorises as

¢n1 (qn2) ¢n2 (qnl) - ¢n1n2 (q) = p(q) <qn1n2 - 1)

for some polynomial p(¢q) (depending on n; and ns). It appears that p(g) has
integer coefficients. If true, then

¢n1 (qnz) ¢n2 (qnl) - ¢n1n2 (q) = 0 mod (qn1n2 - 1) ’ ng(nhn?) =1, (14)

in the polynomial ring Z[q]. The congruence (14) could then be regarded as
the analogue of multiplicativity for the g-totient function. When ¢ = 1, (14) is
simply the statement that the totient function is multiplicative:

¢ (n1) ¢ (n2) = ¢ (nin2), ged(ni,ng) = 1.
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