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We de�ne a q-analogue of the arithmetical totient function φ(n) and prove
q-versions of some elementary results about φ(n).

Euler's totient function φ(n) = A000010(n) is de�ned as the number of
positive integers less than or equal to n that are coprime to n.

φ(n) =
∑

1 ≤ k ≤ n
gcd(k, n) = 1

1. (1)

Two elementary properties of the totient function are Gauss' formula∑
d|n

φ(d) = n, (2)

and the formula obtained from it by Möbius inversion∑
d|n

µ(d)
n

d
= φ(n). (3)

We de�ne the q-totient function φn(q), a q-analogue of the totient function
φ(n), to be the polynomial

φn(q) =
∑

1 ≤ k ≤ n
gcd(k, n) = 1

qk (4)

so that φn(1) = φ(n). The polynomial φn(q) is the n-th row polynomial of
A300294. The �rst few values are tabled below

n 1 2 3 4 5 6

φn(q) q q q + q2 q + q3 q + q2 + q3 + q4 q + q5

The following q-analogue of (2) is stated in [Cam, equation 1.6]. Our proof
follows one of the standard proofs of Gauss' formula.

Theorem 1. ∑
d|n

φd(q
n/d) = q + q2 + · · ·+ qn. (5)
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Proof.

Let An = {1, 2, ..., n}. For each positive integer d, a divisor of n, de�ne

Ad = {x : 1 ≤ x ≤ n, gcd(x, n) = d} . (6)

Clearly, An is the disjoint union of Ad taken over all the divisors of n:

An = td|nAd.

Hence

q + q2 + · · ·+ qn =
∑
d|n

(∑
x∈Ad

qx

)
. (7)

Each element of x ∈ Ad is divisible by d, say x = dy. Now gcd(dy, n) = d if and
only if gcd(y, n/d) = 1. Furthermore, 1 ≤ dy ≤ n if and only if 1 ≤ y ≤ n/d.

Therefore from (6)

Ad = {dy : 1 ≤ y ≤ n/d and gcd(y, n/d) = 1} .

Hence, by the de�nition (4) of the q-totient function,∑
x∈Ad

qx = φn/d
(
qd
)
.

It follows from (7) that

q + q2 + · · ·+ qn =
∑
d|n

(∑
x∈Ad

qx

)

=
∑
d|n

φn/d
(
qd
)

=
∑
d|n

φd

(
qn/d

)
.�

A q-analogue of Cesáro's identity.

Theorem 1 is the particular case f(n) = 1 of the following more general result.

Theorem 2. Let f be an arithmetic function. For positive integer n we have

n∑
k=1

f (gcd(k, n)) qk =
∑
d|n

f(d)φn/d
(
qd
)
. (8)
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Proof.

n∑
k=1

f (gcd(k, n)) qk =
∑
d|n

f(d)
∑

y ≤ n/d
gcd(y, n/d) = 1

qdy =
∑
d|n

f(d)φn/d
(
qd
)
.�

Setting q = 1 in (8) we recover Cesáro's identity [Ces]

n∑
k=1

f (gcd(k, n)) =
∑
d|n

f(d)φ

(
n

d

)
.

Next we give a q-analogue of (3).

Theorem 3. For n ≥ 2,

∑
d|n

µ(d)
qn − 1

qd − 1
= φn(q). (9)

Proof.

Let

P(n, q) =
∑
d|n

µ(d)
qn − 1

qd − 1
(10)

denote the left-hand side of (9).

If d|n then
qn − 1

qd − 1
= 1 + qd + q2d + · · ·+ q(n/d−1)d, (11)

so P(n, q) is polynomial in q of degree less than n.

We calculate the coe�cient of qk in P(n, q) for 0 ≤ k < n. There are three
cases to consider.

(i) k = 0. The constant term of P(n, q) is
∑
d|n

µ(d)= 0 for n ≥ 2.

(ii) Next suppose k is such that gcd(k, n) = D > 1. We shall show that the
coe�cient of qk in the polynomial P (n, q) is zero.
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From (11), we see that we get a contribution of µ(d) to the coe�cient of qk

from each divisor d of n such that some multiple of d is equal to k, that is,
from the divisors d of gcd(n, k) = D.

Thus

the coe�cient of qkin P(n, q) =
∑
d|D

µ(d)

= 0.

(iii) Finally, suppose now k is such that gcd(k, n) = 1. Then only the summand
(qn− 1)/(q− 1) = 1 + q+ · · ·+ qn−1 in (10), corresponding to the divisor d = 1,
includes the term qk, and that with coe�cient equal to 1. We conclude that

P(n, q) =
∑
d|n

µ(d)
qn − 1

qd − 1

=
∑

gcd(k, n) = 1

qk

= φn(q).�

An easy corollary of Theorem 3 is that the generating function of the q-totient
polynomials takes the form

∑
n≥1

µ(n)
xn

(1− xn)(1− qnxn)
= qx+ qx2 +

(
q + q2

)
x3 +

(
q + q3

)
x4 +

(
q + q2 + q3 + q4

)
x5 +

(
q + q5

)
x6 + · · ·

The Möbius function and Ramanujan's sum as values of the

q-totient function

Setting q = e2πi/n in Theorem 3, we �nd that

µ(n) = φn

(
e2πi/n

)
=

∑
1 ≤ k ≤ n

gcd(k, n) = 1

e2πik/n,

expressing the Möbius function µ(n) as the sum of the primitive n-th roots of
unity. This is a well-known result. See, for example, [H&W, Theorem 271 with
m = 1].
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More generally, Ramanujan's two parameter sum cn(m) (see A054533) de�ned
by

cn(m) =
∑

1 ≤ k ≤ n
gcd(k, n) = 1

e2πikm/n

can be expressed as a value of the q-totient function:

cn(m) = φn

(
e2πim/n

)
. (12)

It can be shown from the de�nition that cn(m) is multiplicative when
considered as a function of n for a �xed value of m: that is, for n1 and n2
coprime we have

cn1(m)cn2(m) = cn1n2(m). (13)

The q-totient function φn(q) is not multiplicative as a function of n. However,
for n1 and n2 coprime, it follows from (12) and (13) that the polynomial

φn1
(qn2)φn2

(qn1)− φn1n2
(q) vanishes for q = exp

(
2πim

n1n2

)
, 0 ≤ m < n1n2,

the n1n2-th roots of unity, and so factorises as

φn1
(qn2)φn2

(qn1)− φn1n2
(q) = p(q) (qn1n2 − 1)

for some polynomial p(q) (depending on n1 and n2). It appears that p(q) has
integer coe�cients. If true, then

φn1
(qn2)φn2

(qn1)− φn1n2
(q) ≡ 0 mod (qn1n2 − 1) , gcd(n1, n2) = 1, (14)

in the polynomial ring Z[q]. The congruence (14) could then be regarded as
the analogue of multiplicativity for the q-totient function. When q = 1, (14) is
simply the statement that the totient function is multiplicative:

φ (n1)φ (n2) = φ (n1n2) , gcd(n1, n2) = 1.
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