A q-analogue of the Euler totient function

Peter Bala, Jan 152024

We define a q-analogue of the arithmetical totient function $\phi(n)$ and prove q-versions of some elementary results about $\phi(n)$.

Euler's totient function $\phi(n)=A 000010(\mathrm{n})$ is defined as the number of positive integers less than or equal to n that are coprime to n.

$$
\begin{equation*}
\phi(n)=\sum_{\substack{1 \leq k \leq n \\ \operatorname{gcd}(k, n)=1}} 1 . \tag{1}
\end{equation*}
$$

Two elementary properties of the totient function are Gauss' formula

$$
\begin{equation*}
\sum_{d \mid n} \phi(d)=n \tag{2}
\end{equation*}
$$

and the formula obtained from it by Möbius inversion

$$
\begin{equation*}
\sum_{d \mid n} \mu(d) \frac{n}{d}=\phi(n) . \tag{3}
\end{equation*}
$$

We define the q-totient function $\phi_{n}(q)$, a q-analogue of the totient function $\phi(n)$, to be the polynomial

$$
\begin{equation*}
\phi_{n}(q)=\sum_{\substack{1 \leq k \leq n \\ \operatorname{gcd}(k, n)=1}} q^{k} \tag{4}
\end{equation*}
$$

so that $\phi_{n}(1)=\phi(n)$. The polynomial $\phi_{n}(q)$ is the n-th row polynomial of A300294. The first few values are tabled below

n	1	2	3	4	5	6
$\phi_{n}(q)$	q	q	$q+q^{2}$	$q+q^{3}$	$q+q^{2}+q^{3}+q^{4}$	$q+q^{5}$

The following q-analogue of (2) is stated in [Cam, equation 1.6]. Our proof follows one of the standard proofs of Gauss' formula.

Theorem 1.

$$
\begin{equation*}
\sum_{d \mid n} \phi_{d}\left(q^{n / d}\right)=q+q^{2}+\cdots+q^{n} . \tag{5}
\end{equation*}
$$

Proof.

Let $A_{n}=\{1,2, \ldots, n\}$. For each positive integer d, a divisor of n, define

$$
\begin{equation*}
A_{d}=\{x: 1 \leq x \leq n, \operatorname{gcd}(x, n)=d\} \tag{6}
\end{equation*}
$$

Clearly, A_{n} is the disjoint union of A_{d} taken over all the divisors of n :

$$
A_{n}=\sqcup_{d \mid n} A_{d}
$$

Hence

$$
\begin{equation*}
q+q^{2}+\cdots+q^{n}=\sum_{d \mid n}\left(\sum_{x \in A_{d}} q^{x}\right) \tag{7}
\end{equation*}
$$

Each element of $x \in A_{d}$ is divisible by d, say $x=d y$. Now $\operatorname{gcd}(d y, n)=d$ if and only if $\operatorname{gcd}(y, n / d)=1$. Furthermore, $1 \leq d y \leq n$ if and only if $1 \leq y \leq n / d$.

Therefore from (6)

$$
A_{d}=\{d y: 1 \leq y \leq n / d \text { and } \operatorname{gcd}(y, n / d)=1\}
$$

Hence, by the definition (4) of the q-totient function,

$$
\sum_{x \in A_{d}} q^{x}=\phi_{n / d}\left(q^{d}\right)
$$

It follows from (7) that

$$
\begin{aligned}
q+q^{2}+\cdots+q^{n} & =\sum_{d \mid n}\left(\sum_{x \in A_{d}} q^{x}\right) \\
& =\sum_{d \mid n} \phi_{n / d}\left(q^{d}\right) \\
& =\sum_{d \mid n} \phi_{d}\left(q^{n / d}\right) .
\end{aligned}
$$

A q-analogue of Cesáro's identity.

Theorem 1 is the particular case $f(n)=1$ of the following more general result.

Theorem 2. Let f be an arithmetic function. For positive integer n we have

$$
\begin{equation*}
\sum_{k=1}^{n} f(\operatorname{gcd}(k, n)) q^{k}=\sum_{d \mid n} f(d) \phi_{n / d}\left(q^{d}\right) \tag{8}
\end{equation*}
$$

Proof.

$$
\sum_{k=1}^{n} f(\operatorname{gcd}(k, n)) q^{k}=\sum_{d \mid n} f(d) \sum_{\substack{y \leq n / d \\ \operatorname{gcd}(y, n / d)=1}} q^{d y}=\sum_{d \mid n} f(d) \phi_{n / d}\left(q^{d}\right)
$$

Setting $q=1$ in (8) we recover Cesáro's identity [Ces]

$$
\sum_{k=1}^{n} f(\operatorname{gcd}(k, n))=\sum_{d \mid n} f(d) \phi\left(\frac{n}{d}\right)
$$

Next we give a q-analogue of (3).

Theorem 3. For $n \geq 2$,

$$
\begin{equation*}
\sum_{d \mid n} \mu(d) \frac{q^{n}-1}{q^{d}-1}=\phi_{n}(q) \tag{9}
\end{equation*}
$$

Proof.

Let

$$
\begin{equation*}
\mathrm{P}(n, q)=\sum_{d \mid n} \mu(d) \frac{q^{n}-1}{q^{d}-1} \tag{10}
\end{equation*}
$$

denote the left-hand side of (9).

If $d \mid n$ then

$$
\begin{equation*}
\frac{q^{n}-1}{q^{d}-1}=1+q^{d}+q^{2 d}+\cdots+q^{(n / d-1) d} \tag{11}
\end{equation*}
$$

so $\mathrm{P}(n, q)$ is polynomial in q of degree less than n.

We calculate the coefficient of q^{k} in $\mathrm{P}(n, q)$ for $0 \leq k<n$. There are three cases to consider.
(i) $k=0$. The constant term of $\mathrm{P}(n, q)$ is $\sum_{d \mid n} \mu(d)=0$ for $n \geq 2$.
(ii) Next suppose k is such that $\operatorname{gcd}(k, n)=D>1$. We shall show that the coefficient of q^{k} in the polynomial $P(n, q)$ is zero.

From (11), we see that we get a contribution of $\mu(d)$ to the coefficient of q^{k} from each divisor d of n such that some multiple of d is equal to k, that is, from the divisors d of $\operatorname{gcd}(n, k)=D$.

Thus

$$
\text { the coefficient of } \begin{aligned}
q^{k} \text { in } \mathrm{P}(n, q) & =\sum_{d \mid D} \mu(d) \\
& =0
\end{aligned}
$$

(iii) Finally, suppose now k is such that $\operatorname{gcd}(k, n)=1$. Then only the summand $\left(q^{n}-1\right) /(q-1)=1+q+\cdots+q^{n-1}$ in (10), corresponding to the divisor $d=1$, includes the term q^{k}, and that with coefficient equal to 1 . We conclude that

$$
\begin{aligned}
\mathrm{P}(n, q) & =\sum_{d \mid n} \mu(d) \frac{q^{n}-1}{q^{d}-1} \\
& =\sum_{\operatorname{gcd}(k, n)=1} q^{k} \\
& =\phi_{n}(q) . \square
\end{aligned}
$$

An easy corollary of Theorem 3 is that the generating function of the q-totient polynomials takes the form

$$
\begin{aligned}
\sum_{n \geq 1} \mu(n) \frac{x^{n}}{\left(1-x^{n}\right)\left(1-q^{n} x^{n}\right)}= & q x+q x^{2}+\left(q+q^{2}\right) x^{3}+\left(q+q^{3}\right) x^{4}+ \\
& \left(q+q^{2}+q^{3}+q^{4}\right) x^{5}+\left(q+q^{5}\right) x^{6}+\cdots
\end{aligned}
$$

The Möbius function and Ramanujan's sum as values of the q-totient function

Setting $q=e^{2 \pi i / n}$ in Theorem 3, we find that

$$
\begin{aligned}
& \mu(n)=\phi_{n}\left(e^{2 \pi i / n}\right) \\
&=\sum_{\substack{1 \leq k \leq n}} e^{2 \pi i k / n}, \\
& \operatorname{gcd}(k, n)=1
\end{aligned}
$$

expressing the Möbius function $\mu(n)$ as the sum of the primitive n-th roots of unity. This is a well-known result. See, for example, [H\&W, Theorem 271 with $m=1]$.

More generally, Ramanujan's two parameter sum $c_{n}(m)$ (see A054533) defined by

$$
c_{n}(m)=\sum_{\substack{1 \leq k \leq n \\ \operatorname{gcd}(k, n)=1}} e^{2 \pi i k m / n}
$$

can be expressed as a value of the q-totient function:

$$
\begin{equation*}
c_{n}(m)=\phi_{n}\left(e^{2 \pi i m / n}\right) \tag{12}
\end{equation*}
$$

It can be shown from the definition that $c_{n}(m)$ is multiplicative when considered as a function of n for a fixed value of m : that is, for n_{1} and n_{2} coprime we have

$$
\begin{equation*}
c_{n_{1}}(m) c_{n_{2}}(m)=c_{n_{1} n_{2}}(m) . \tag{13}
\end{equation*}
$$

The q-totient function $\phi_{n}(q)$ is not multiplicative as a function of n. However, for n_{1} and n_{2} coprime, it follows from (12) and (13) that the polynomial $\phi_{n_{1}}\left(q^{n_{2}}\right) \phi_{n_{2}}\left(q^{n_{1}}\right)-\phi_{n_{1} n_{2}}(q)$ vanishes for $q=\exp \left(\frac{2 \pi i m}{n_{1} n_{2}}\right), 0 \leq m<n_{1} n_{2}$, the $n_{1} n_{2}$-th roots of unity, and so factorises as

$$
\phi_{n_{1}}\left(q^{n_{2}}\right) \phi_{n_{2}}\left(q^{n_{1}}\right)-\phi_{n_{1} n_{2}}(q)=p(q)\left(q^{n_{1} n_{2}}-1\right)
$$

for some polynomial $p(q)$ (depending on n_{1} and n_{2}). It appears that $p(q)$ has integer coefficients. If true, then

$$
\begin{equation*}
\phi_{n_{1}}\left(q^{n_{2}}\right) \phi_{n_{2}}\left(q^{n_{1}}\right)-\phi_{n_{1} n_{2}}(q) \equiv 0 \bmod \left(q^{n_{1} n_{2}}-1\right), \quad \operatorname{ccd}\left(n_{1}, n_{2}\right)=1 \tag{14}
\end{equation*}
$$

in the polynomial ring $\mathbb{Z}[q]$. The congruence (14) could then be regarded as the analogue of multiplicativity for the q-totient function. When $q=1$, (14) is simply the statement that the totient function is multiplicative:

$$
\phi\left(n_{1}\right) \phi\left(n_{2}\right)=\phi\left(n_{1} n_{2}\right), \quad \operatorname{gcd}\left(n_{1}, n_{2}\right)=1
$$

References

[Cam] Geoffrey B. Campbell, A new class of infinite products, and Euler's totient, Internat. J. of Math. \& Math. Sci. Vol. 17 No. 3 (1994) 417-422.
[Ces] E. Cesáro, Etude moyenne du plus grand commun diviseur de deux nombres, Ann. Mat. Pura Appl. 13 (1885), 235-250.
[H and W] Hardy, G. H.; Wright, E. M. , An Introduction to the Theory of Numbers (5th ed.), Oxford University Press, (1980) [First edition published 1938], ISBN 978-0-19-853171-5.

