%I #24 Mar 13 2018 09:10:53
%S 8,18,47,132,242,268,993,1568,3957,5257,14318,18543,43932,66347,72662,
%T 161832,330182,1413443,1732593,2298668,3315268,9548768,15926318,
%U 24310918,27028568,51853693,162166243,420024818,472936732,599832943,1892369318
%N Numbers n such that n^2 + 1 can be expressed as j^2 + k^2, j > k > 1, in more ways than for any smaller n.
%e a(1) = 8: 8^2 + 1 = 65 = 7^2 + 4^2,
%e a(2) = 18: 18^2 + 1 = 325 = 17^2 + 6^2 = 15^2 + 10^2,
%e a(3) = 47: 47^2 + 1 = 2210 = 43^2 + 19^2 = 41^2 + 23^2 = 37^2 + 29^2,
%e a(4) = 132: 132^2 + 1 = 17425 = 129^2 + 28^2 = 127^2 + 36^2 = 120^2 + 55^2 = 116^2 + 63^2 = 105^2 + 80^2.
%Y Cf. A050796, A299707, A299708, A300162, A300163.
%K nonn,more
%O 1,1
%A _Hugo Pfoertner_, Feb 27 2018
%E a(17) from _Hugo Pfoertner_, Mar 08 2018
%E a(18)-a(21) from _Robert Price_, Mar 10 2018
%E a(22)-a(31) from _Giovanni Resta_, Mar 13 2018