%I
%S 4,26,94,372,1512,6133,24742,100035,404608,1636222,6616385,26756052,
%T 108199516,437548895,1769407046,7155326538,28935512224,117012660592,
%U 473188897749,1913534302589,7738164499878,31292456968931,126543945261462
%N Number of nX3 0..1 arrays with every element equal to 0, 1, 2, 3, 5, 6 or 7 king-move adjacent elements, with upper left element zero.
%C Column 3 of A299675.
%H R. H. Hardin, <a href="/A299670/b299670.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 5*a(n-1) -3*a(n-2) -12*a(n-4) -15*a(n-5) +20*a(n-6) +17*a(n-7) +32*a(n-8) -64*a(n-9) -5*a(n-10) +25*a(n-11) +77*a(n-12) +11*a(n-13) -27*a(n-14) -21*a(n-15) -14*a(n-16) -13*a(n-17) -4*a(n-18) for n>19
%e Some solutions for n=7
%e ..0..1..1. .0..1..1. .0..1..1. .0..0..1. .0..0..0. .0..1..0. .0..0..1
%e ..0..0..0. .0..1..1. .1..0..0. .1..1..0. .0..1..1. .1..0..0. .1..1..0
%e ..1..0..0. .0..0..0. .1..1..1. .0..0..0. .1..1..0. .1..1..1. .1..1..1
%e ..0..0..0. .1..0..0. .0..1..1. .0..0..1. .0..0..0. .0..1..1. .1..1..0
%e ..0..1..1. .0..0..0. .1..1..1. .0..0..0. .0..0..1. .1..1..1. .1..1..1
%e ..1..0..1. .0..1..1. .0..1..1. .0..0..1. .0..0..0. .1..0..0. .0..0..1
%e ..0..1..0. .0..1..1. .0..1..1. .0..0..1. .1..1..0. .0..1..1. .1..0..1
%Y Cf. A299675.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 16 2018
|