The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A299336 Expansion of 1 / ((1 - x)^7*(1 + x)^4). 4

%I #11 May 09 2023 12:06:20

%S 1,3,10,22,49,91,168,280,462,714,1092,1596,2310,3234,4488,6072,8151,

%T 10725,14014,18018,23023,29029,36400,45136,55692,68068,82824,99960,

%U 120156,143412,170544,201552,237405,278103,324786,377454,437437,504735,580888,665896

%N Expansion of 1 / ((1 - x)^7*(1 + x)^4).

%H Colin Barker, <a href="/A299336/b299336.txt">Table of n, a(n) for n = 0..1000</a>

%H Jia Huang, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL26/Huang/huang8.html">Partially Palindromic Compositions</a>, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See p. 4.

%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (3,1,-11,6,14,-14,-6,11,-1,-3,1).

%F a(n) = (2*n^6 + 66*n^5 + 860*n^4 + 5640*n^3 + 19568*n^2 + 33984*n + 23040) / 23040 for n even.

%F a(n) = (2*n^6 + 66*n^5 + 860*n^4 + 5580*n^3 + 18578*n^2 + 28914*n + 15120) / 23040 for n odd.

%F a(n) = 3*a(n-1) + a(n-2) - 11*a(n-3) + 6*a(n-4) + 14*a(n-5) - 14*a(n-6) - 6*a(n-7) + 11*a(n-8) - a(n-9) - 3*a(n-10) + a(n-11) for n>10.

%o (PARI) Vec(1 / ((1 - x)^7*(1 + x)^4) + O(x^40))

%Y Cf. A001769, A060099, A299335, A299337, A299338.

%K nonn,easy

%O 0,2

%A _Colin Barker_, Feb 07 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 10:19 EDT 2024. Contains 373407 sequences. (Running on oeis4.)