login
Partial sums of A299289.
51

%I #10 Feb 12 2018 12:35:39

%S 1,9,37,97,203,367,603,923,1341,1869,2521,3309,4247,5347,6623,8087,

%T 9753,11633,13741,16089,18691,21559,24707,28147,31893,35957,40353,

%U 45093,50191,55659,61511,67759,74417,81497,89013,96977,105403,114303,123691

%N Partial sums of A299289.

%F Conjectures from _Colin Barker_, Feb 11 2018: (Start)

%F G.f.: (1 + 6*x + 12*x^2 + 6*x^3 + x^4) / ((1 - x)^4*(1 + x)).

%F a(n) = (12 + 34*n + 39*n^2 + 26*n^3) / 12 for n even.

%F a(n) = (9 + 34*n + 39*n^2 + 26*n^3) / 12 for n odd.

%F a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) for n>4.

%F (End)

%Y Cf. A299289.

%Y The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Feb 10 2018