%I #4 Feb 03 2018 08:51:45
%S 5,16,23,232,623,3368,20226,95305,517446,2849177,14996918,80878846,
%T 438307578,2350137185,12666447836,68352017686,367891360100,
%U 1982533944388,10686608415147,57568972855703,310217349581539,1671740619224755
%N Number of nX4 0..1 arrays with every element equal to 0, 1, 3, 4, 5 or 7 king-move adjacent elements, with upper left element zero.
%C Column 4 of A299128.
%H R. H. Hardin, <a href="/A299124/b299124.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A299124/a299124.txt">Empirical recurrence of order 66</a>
%F Empirical recurrence of order 66 (see link above)
%e Some solutions for n=5
%e ..0..0..0..0. .0..1..0..0. .0..0..1..0. .0..0..1..0. .0..1..0..0
%e ..0..0..1..1. .1..0..0..0. .0..0..1..0. .0..0..0..1. .0..1..0..0
%e ..0..0..0..0. .1..1..1..1. .0..1..1..1. .1..1..0..0. .1..1..0..0
%e ..1..1..1..1. .1..1..0..0. .0..0..1..1. .1..1..0..0. .0..1..0..0
%e ..1..1..1..1. .1..1..1..1. .0..0..0..0. .0..0..0..1. .0..1..0..0
%Y Cf. A299128.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 03 2018
|