%I #4 Jan 17 2018 07:14:47
%S 5,13,9,63,119,243,1086,2782,8509,31229,96678,326277,1137213,3778416,
%T 12973520,44739137,152068087,523345877,1801042403,6167742173,
%U 21225962235,73014570280,250701169712,862559095665,2966725424201,10196566165974
%N Number of nX4 0..1 arrays with every element equal to 0, 1, 3, 4 or 6 king-move adjacent elements, with upper left element zero.
%C Column 4 of A298320.
%H R. H. Hardin, <a href="/A298316/b298316.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A298316/a298316.txt">Empirical recurrence of order 71</a>
%F Empirical recurrence of order 71 (see link above)
%e Some solutions for n=7
%e ..0..1..0..0. .0..1..0..1. .0..1..1..0. .0..1..0..0. .0..0..1..0
%e ..1..0..0..0. .1..0..0..0. .1..0..1..1. .0..1..0..0. .0..0..1..0
%e ..1..1..1..1. .1..1..0..1. .0..0..1..0. .1..1..1..1. .1..0..1..1
%e ..0..1..0..0. .0..1..0..1. .0..1..0..1. .1..1..1..1. .1..0..0..1
%e ..1..1..1..1. .0..1..0..0. .1..0..1..1. .0..1..0..0. .0..0..1..0
%e ..1..0..0..0. .1..1..1..0. .0..0..1..0. .1..1..1..1. .0..0..0..0
%e ..0..1..0..0. .0..1..0..1. .0..0..1..0. .0..1..0..0. .1..0..0..1
%Y Cf. A298320.
%K nonn
%O 1,1
%A _R. H. Hardin_, Jan 17 2018