login
Analog of Motzkin numbers for Coxeter type D.
2

%I #26 Jul 27 2022 09:17:28

%S 1,4,11,31,87,246,699,1996,5723,16468,47533,137567,399073,1160082,

%T 3378483,9855207,28790403,84218052,246651729,723165765,2122391109,

%U 6234634266,18330019029,53932825926,158802303429,467898288676,1379485436579,4069450219561

%N Analog of Motzkin numbers for Coxeter type D.

%F a(n) = A002426(n-1) + A290380(n) (the latter being extended by A290380(2)=0).

%F Conjectural algebraic equation: 3*t+2+(3*t^2+5*t-2)*f(t)+(3*t^3-t^2)*f(t)^2 = 0.

%F From _Peter Luschny_, Jan 23 2018: (Start)

%F a(n) = hypergeom([(1-n)/2,1-n/2],[1],4]+(n-2)*hypergeom([1-n/2,3/2-n/2],[2],4).

%F a(n) = G(n-1,1-n,-1/2) + G(n-2,1-n,-1/2)*(n-2)/(n-1) where G(n,a,x) denotes the n-th Gegenbauer polynomial. (End)

%F D-finite with recurrence +2*n*a(n) +(-7*n+6)*a(n-1) +9*(n-4)*a(n-3)=0. - _R. J. Mathar_, Jul 27 2022

%p A298300 := proc(n)

%p hypergeom([(1-n)/2,1-n/2],[1],4)+(n-2)*hypergeom([1-n/2,3/2-n/2],[2],4);

%p simplify(%) ;

%p end proc:

%p seq(A298300(n),n=2..40) ; # _R. J. Mathar_, Jul 27 2022

%t b[n_] := Hypergeometric2F1[(1 - n)/2, 1 - n/2, 1, 4];

%t c[n_] := (n-2) Hypergeometric2F1[1 - n/2, 3/2 - n/2, 2, 4];

%t Table[b[n] + c[n], {n, 2, 29}] (* _Peter Luschny_, Jan 23 2018 *)

%o (Sage)

%o def a(n):

%o return (sum(ZZ(n - 2) / i * binomial(2 * i - 2, i - 1) *

%o binomial(n - 2, 2 * i - 2)

%o for i in range(1, floor(n / 2) + 1)) +

%o sum(binomial(n - 1, k) * binomial(n - 1 - k, k)

%o for k in range(floor((n - 1) / 2) + 1)))

%Y Cf. A001006 (type A), A002426 (type B), A290380.

%K nonn

%O 2,2

%A _F. Chapoton_, Jan 16 2018