%I #4 Jan 11 2018 07:59:03
%S 0,3,0,2,6,13,22,68,132,323,790,1724,4158,10007,22770,54346,129582,
%T 301431,715256,1697866,3987490,9441255,22363356,52732570,124755460,
%U 295222595,697290424,1649165304,3900971604,9220090253,21804026010
%N Number of nX3 0..1 arrays with every element equal to 1, 3, 4 or 6 king-move adjacent elements, with upper left element zero.
%C Column 3 of A298063.
%H R. H. Hardin, <a href="/A298058/b298058.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = a(n-1) +2*a(n-2) +12*a(n-3) -8*a(n-4) -20*a(n-5) -50*a(n-6) +12*a(n-7) +61*a(n-8) +87*a(n-9) +13*a(n-10) -74*a(n-11) -50*a(n-12) -8*a(n-13) +45*a(n-14) +8*a(n-15) +2*a(n-16) -12*a(n-17) for n>18
%e Some solutions for n=9
%e ..0..0..1. .0..0..1. .0..1..0. .0..0..1. .0..0..1. .0..1..1. .0..0..1
%e ..0..0..1. .0..0..1. .0..1..0. .0..0..1. .0..0..1. .0..1..1. .0..0..1
%e ..1..1..1. .0..1..1. .1..1..1. .0..1..1. .1..1..1. .0..0..0. .0..1..1
%e ..1..1..1. .0..0..1. .0..1..0. .0..0..1. .1..1..1. .0..0..0. .0..0..1
%e ..0..0..1. .0..1..1. .0..1..0. .0..1..1. .0..0..1. .0..1..1. .1..0..1
%e ..1..1..1. .1..0..1. .1..1..1. .0..0..1. .0..0..1. .0..1..1. .0..1..1
%e ..1..1..1. .0..0..1. .1..1..1. .0..0..1. .0..1..1. .0..0..0. .1..1..1
%e ..1..0..0. .0..1..1. .0..0..1. .0..1..1. .0..0..1. .0..1..1. .1..0..1
%e ..1..0..0. .0..1..1. .0..0..1. .0..1..1. .0..0..1. .0..1..1. .1..0..1
%Y Cf. A298063.
%K nonn
%O 1,2
%A _R. H. Hardin_, Jan 11 2018