%I #4 Jan 11 2018 07:16:52
%S 1,7,15,19,23,34,63,96,147,233,368,588,933,1500,2404,3842,6157,9887,
%T 15907,25577,41128,66175,106524,171543,276293,445096,717116,1155533,
%U 1862256,3001558,4838268,7799411,12573667,20271639,32684289,52699948
%N Number of nX3 0..1 arrays with every element equal to 1, 2, 4 or 6 king-move adjacent elements, with upper left element zero.
%C Column 3 of A298055.
%H R. H. Hardin, <a href="/A298050/b298050.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 3*a(n-1) -a(n-2) -2*a(n-3) -3*a(n-5) +3*a(n-6) +3*a(n-7) -a(n-8) +2*a(n-9) +6*a(n-10) -8*a(n-11) -3*a(n-12) -4*a(n-13) -2*a(n-14) +4*a(n-15) +8*a(n-16) -a(n-17) -3*a(n-18) for n>19
%e Some solutions for n=7
%e ..0..0..1. .0..1..0. .0..1..1. .0..1..0. .0..1..1. .0..1..0. .0..1..0
%e ..1..0..1. .1..0..1. .0..1..0. .0..1..0. .0..1..0. .1..0..1. .1..0..1
%e ..0..1..0. .0..1..0. .1..1..0. .1..1..1. .1..0..1. .0..1..0. .0..1..0
%e ..1..1..0. .1..0..1. .1..1..0. .1..1..1. .0..1..0. .1..0..1. .1..0..1
%e ..1..1..0. .0..1..0. .0..1..0. .0..1..0. .1..0..1. .0..1..0. .0..1..0
%e ..0..1..0. .1..0..1. .1..0..1. .1..0..0. .0..1..0. .1..0..1. .1..0..1
%e ..0..1..1. .0..1..0. .0..1..0. .0..1..1. .1..0..1. .1..0..0. .0..0..1
%Y Cf. A298055.
%K nonn
%O 1,2
%A _R. H. Hardin_, Jan 11 2018
|