login
Partial sums of A298015.
1

%I #10 Apr 30 2023 11:11:28

%S 1,4,10,25,49,67,100,148,178,229,301,343,412,508,562,649,769,835,940,

%T 1084,1162,1285,1453,1543,1684,1876,1978,2137,2353,2467,2644,2884,

%U 3010,3205,3469,3607,3820,4108,4258,4489,4801,4963,5212,5548,5722,5989,6349,6535,6820,7204,7402,7705,8113,8323

%N Partial sums of A298015.

%H Colin Barker, <a href="/A298018/b298018.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,2,-2,0,-1,1).

%F From _Colin Barker_, Jan 15 2018: (Start)

%F G.f.: (1 + 3*x + 6*x^2 + 13*x^3 + 18*x^4 + 6*x^5 + 4*x^6 + 3*x^7) / ((1 - x)^3*(1 + x + x^2)^2).

%F a(n) = a(n-1) + 2*a(n-3) - 2*a(n-4) - a(n-6) + a(n-7) for n>7.

%F (End)

%t LinearRecurrence[{1,0,2,-2,0,-1,1},{1,4,10,25,49,67,100,148},60] (* _Harvey P. Dale_, Apr 30 2023 *)

%o (PARI) Vec((1 + 3*x + 6*x^2 + 13*x^3 + 18*x^4 + 6*x^5 + 4*x^6 + 3*x^7) / ((1 - x)^3*(1 + x + x^2)^2) + O(x^50)) \\ _Colin Barker_, Jan 15 2018

%Y Cf. A298015.

%K nonn,easy

%O 0,2

%A Chaim Goodman-Strauss and _N. J. A. Sloane_, Jan 13 2018