The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A297846 Primes p such that p is the largest member of a Wieferich tuple. 10
 71, 359, 487, 863, 1069, 1093, 1483, 1549, 2281, 3511, 4871, 6451, 6733, 7393, 12049, 13691, 14107, 14149, 15377, 17401, 18787, 20771, 29573, 32933, 35747, 39233, 44483, 46021, 48947, 49559, 54787, 54979, 59197, 60493, 69401, 69653, 77263, 77867, 105323, 122327 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Let p_1, p_2, p_3, ..., p_u be a set P of distinct prime numbers and let m_1, m_2, m_3, ..., m_u be a set V of variables. Then P is a Wieferich u-tuple if there exists a mapping from the elements of P to the elements of V such that each of the following congruences is satisfied: m_1^(m_2-1) == 1 (mod (m_2)^2), m_2^(m_3-1) == 1 (mod (m_3)^2), ..., m_u^(m_1-1) == 1 (mod (m_1)^2). LINKS EXAMPLE The primes 31, 79, 251, 263, 421 and 1483 satisfy 31^(79-1) == 1 (mod 79^2), 79^(263-1) == 1 (mod 263^2), 263^(251-1) == 1 (mod 251^2), 251^(421-1) == 1 (mod 421^2), 421^(1483-1) == 1 (mod 1483^2) and 1483^(31-1) == 1 (mod 31^2), so those primes form a Wieferich tuple. Since 1483 is the largest member of the tuple, 1483 is a term of the sequence. PROG (PARI) findwiefs(vec, lim) = my(v=[]); for(k=1, #vec, forprime(p=1, lim, if(Mod(vec[k], p^2)^(p-1)==1, v=concat(v, [p])))); vecsort(v, , 8) newprimes(v, w) = setminus(w, v) is(n) = my(v=findwiefs([n], n), w=[], np=[]); while(1, w=findwiefs(v, n); if(newprimes(v, w)==[], return(0), if(setsearch(vecsort(newprimes(v, w)), n) > 0, return(1))); v=concat(v, newprimes(v, w)); v=vecsort(v, , 8)) forprime(p=1, , if(is(p), print1(p, ", "))) CROSSREFS Supersequence of A253683, A266829 and A289899. Supersequence of column 1 of A271100. Sequence in context: A142375 A215470 A344282 * A142304 A201313 A078949 Adjacent sequences:  A297843 A297844 A297845 * A297847 A297848 A297849 KEYWORD nonn AUTHOR Felix Fröhlich, Jan 07 2018 EXTENSIONS More terms from Felix Fröhlich, Jan 22 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 18:33 EDT 2021. Contains 345049 sequences. (Running on oeis4.)