login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array with four columns read by rows: T(n,k) = number of n step walks in the first octant on a square lattice with last step being right (k=1), left (k=2), up (k=3) or down (k=4).
0

%I #26 Nov 14 2019 22:09:40

%S 1,0,0,0,1,1,1,0,3,1,1,1,6,6,6,2,20,10,10,10,50,50,50,25,175,105,105,

%T 105,490,490,490,294,1764,1176,1176,1176,5292,5292,5292,3528,19404,

%U 13860,13860

%N Array with four columns read by rows: T(n,k) = number of n step walks in the first octant on a square lattice with last step being right (k=1), left (k=2), up (k=3) or down (k=4).

%C Sum_{k=1..4} T(n,k) = A005558(n).

%C For n >= 1, the ratio of the numbers of right or up last steps to left or down last steps is floor((n+2)/2): floor(n/2). - _Roger Ford_, Oct 28 2019

%F n=1: T(1,1)=1, T(1,2)=0, T(1,3)=0, T(1,4)=0;

%F n>1: T(n,1) = C(n,floor(n/2))*C(n-1,floor((n-1)/2)) - C(n,floor((n-1)/2))*C(n-1,floor((n-2)/2));

%F T(n,2) = T(n,3) = C(n-1,floor(n/2)-1)*C(n,floor(n/2)-1)/floor(n/2);

%F n odd: T(n,4) = T(n,2);

%F n even: T(n,4) = T(n,2)*((n/2-1)/(n/2+1));

%F For n > 1, T(n,2) = T(n,3) = A001263(n,floor(n/2)).

%e k= 1 2 3 4 total

%e N right left up down walks

%e 1 1 0 0 0 =1

%e 2 1 1 1 0 =3

%e 3 3 1 1 1 =6

%e 4 6 6 6 2 =20

%e There are 6 walks of 4 steps in the octant with the last step right. T(4,1)=6 RRRR, RRLR, RLRR, RUDR, RURR, RRUR.

%Y Cf. A005558, A001263.

%K nonn,tabf,walk,more

%O 1,9

%A _Roger Ford_, Jan 02 2018