%I #8 Feb 26 2019 08:20:51
%S 4,15,45,152,511,1681,5588,18575,61621,204608,679407,2255577,7488924,
%T 24864735,82554557,274095080,910042783,3021494049,10031871012,
%U 33307511407,110586567109,367166113104,1219053634447,4047464337257
%N Number of n X 2 0..1 arrays with no 1 adjacent to 3 king-move neighboring 1s.
%H R. H. Hardin, <a href="/A297088/b297088.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 4*a(n-1) - 2*a(n-2) + 3*a(n-3) - 14*a(n-4) + 4*a(n-5).
%F Empirical g.f.: x*(4 - x - 7*x^2 - 10*x^3 + 4*x^4) / (1 - 4*x + 2*x^2 - 3*x^3 + 14*x^4 - 4*x^5). - _Colin Barker_, Feb 26 2019
%e Some solutions for n=7:
%e ..1..0. .1..1. .1..0. .0..1. .1..1. .0..0. .0..1. .0..1. .1..0. .0..0
%e ..0..0. .0..1. .0..0. .0..0. .0..0. .0..1. .1..0. .1..0. .1..0. .1..0
%e ..0..0. .1..1. .1..1. .0..1. .1..0. .1..1. .0..0. .0..0. .0..0. .0..0
%e ..1..0. .1..1. .0..0. .0..0. .0..0. .0..0. .1..0. .1..0. .1..0. .0..1
%e ..0..1. .1..1. .0..1. .1..0. .0..0. .1..0. .1..0. .1..0. .0..0. .0..0
%e ..1..0. .0..1. .1..1. .1..0. .1..0. .0..0. .0..0. .0..0. .0..1. .0..1
%e ..1..0. .0..0. .0..0. .0..0. .0..0. .1..0. .1..0. .0..0. .1..1. .1..1
%Y Column 2 of A297094.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 25 2017